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1 Introduction
The assessment of expected duration of life of elderly individuals as healthy,
with illness and/or with disability has become a task of increasing relevance for
a number of reasons. First, accurate estimation of durations in various states is
a strategic endeavor in the verification of theories regarding the predicted course
of morbidity, disability and mortality. Second, evaluation of competing policies
for elderly care is crucially dependent on accurate estimation of the demand
size for and costs of health care and services for the dependent population. The
latter cannot be attained without proper assessment of the expected durations
and distribution of life of individuals by health statuses. With some notable
exceptions, estimation of duration of time spent in various health statuses is
carried out with cross-sectional information and with procedures resting on as-
sumptions that may appear, on first blush at least, restrictive and confining.
The one technique that most investigators, constrained as they are by the avail-
ability of cross-sectional information only, use with some regularity and success
is the so-called Sullivan method. This procedure requires information about
general mortality in the population and about the prevalence of a finite number
of disabilities used to define, by themselves or in combinations, states of depen-
dence or, more generally, health statuses that individuals may occupy. A less
known, but quite reasonable approach, can be implemented at the expense of
altering some assumptions and requiring additional information (Monteverde,
2004). We will refer to this as the Pseudo Multistate Model (PMM). As is the
case for Sullivan’ s method, this procedure requires information on overall mor-
tality but, in addition, allows the investigator to specify parameters controlling
the degree to which disabled and non disabled individuals are exposed to mor-
tality differentials.Unlike the Sullivan procedures, PMM has the advantage of
enabling the investigator to estimate indirectly all transitions rate of the under-
lying multistate process. These may be useful to estimate expected individual
long term care costs and other useful actuarial calculations.
Although somewhat different in nature, both methodologies produce esti-

mates of expected duration of life in health and disability under assumptions
that appear to be quite strong. The first is the assumption of stationarity,
namely, that transition rates governing the mortality and disability processes
are constant over the recent past and, consequently, that the observed cross sec-
tional rates are identical to the cohort rates. The second one is homogeneity of
risks, an assumption that forces mortality risks of the disabled to be the same
as that of the healthy. As mentioned before, this assumption can be relaxed
somewhat in the second method introduced above. The third assumption is the
absence of recovery (rate of recovery are zero), that is, those who become
disabled cannot return to the healthy state. Users and critics of these proce-
dures alike admit that, more often than not, one or several of these assumptions
are not mer in most empirical applications (Rogers, Rogers and Belanger, 1989,
1990). Yet, despite some important work to identify the behavior of estimates
(Robine and Ritchie, 1991; Robine and Mathers, 1993; Crimmins, Saito and
Hayward, 1993;Lievre, Brouard and Heathcote 2003 ) there is no clear under-

2



standing about the direction, magnitude and distributional properties of the
errors associated with departures from the three assumptions identified before.
If we could confirm that these errors are small, the matter could be dismissed.
In such case it would no longer be necessary to insist on requiring longitudi-
nal information to estimate expectancy in health and disability when transition
rates are changing over time or to collect additional (and costly) information
when there is no basis to assert the absence of recovery or the lack of homogene-
ity of risks. Some authors have argued (Crimmins, Saito and Hayward, 1993)
that Sullivan-like estimates reflect an assortment of conditions and that they are
useful even under gross violation of assumptions but that, in any case, should be
interpreted carefully rather than discarded altogether when some assumptions
are known to be in error. However, with imperfect knowledge of sensitivity
to errors it is difficult to understand the conditions under which Sullivan-type
estimates adequately describe population health status conditions or when al-
ternative measures are called for.
Our goal in this paper is to illustrate the magnitude, direction and distribu-

tional properties of errors generated as assumptions are violated. We show that,
at least under the scenarios we propose, the magnitude of errors is modest but
that, in some cases at least, should call for more than caution in interpretation.
Although we focus only on violations to the assumptions of homogeneity of
risks and no recovery, we suspect that when they are combined with lack
of stationarity, errors could only grow and, consequently, make inferences more
questionable. We also show that difficulties in obtaining unbiased estimates may
become more serious if the investigator wants to do more than evaluating con-
ditions at one point in time. The study of group differentials or, alternatively,
the examination of time trends, for example, are equally prone to violation of
assumptions and could also be affected by lack of robustness. The results we
present below suggest that the average magnitude of errors is in general not
large but that, under some scenarios at least, may exceed tolerable levels. If
so, theory verification and estimates of costs of health care and services or ac-
tuarial calculations for decisions about insurance premia or insurance schemes
feasibility could become problematic.
We use Monte Carlo simulation methods to generate individual health sta-

tus trajectories that depend on well-defined and well-behaved transition rates.
These rates are defined to generate scenarios departing to variable degrees from
the assumptions invoked by Sullivan and the PMM methods. We then study
the magnitude, direction and distributional properties of errors associated with
each method. We focus on the differences between estimates of life expectancy
in disability derived from the above mentioned methods and the "true" values
embedded in each simulation. We then study the behavior of the absolute values
of relative errors and their distribution.
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2 Background

The most important rational for performing the exercise we propose in this
paper is that the assessment of duration of life in disability or illness and in
health is both theoretically and practically relevant. Indeed, verification of
theoretical conjectures and evaluation of demand size and costs of long term
care, for example, depend critically on the proper measurement of longevity and
duration in various health states

2.1 Verifying competing theories

The nature of longevity and health dynamics continues to occupy a central
piece in theories of aging. Two extreme and contradictory theories have been
developed. The optimistic theory (the compression of morbidity) refers to a
scenario where the onset of chronic illnesses is delayed and begins to affect
mostly the last few years of life. The result is that healthy life is prolonged
at a rate greater than that of total years of life. Consequently, the proportion
of healthy life should be expected to increase (Fries, 1980). A more pessimistic
scenario suggests that increases in average duration of life cannot be matched by
corresponding improvements in the incidence rates and duration of morbidity
(or rates of recovery). The outcome will be just opposite to the one suggested by
the first scenario, namely, one where chronically ill persons are simply kept alive
longer with the resulting expansion of morbidity (Gruenberg, 1977). Manton
(1982) attempted to reconcile the optimistic and pessimistic theories by arguing
that although increases in longevity may lengthen the duration of morbidity,
they are also likely to decrease its severity and, consequently, the resulting
"quality of life" of populations should improve.
Discriminating between these contrasting theoretical perspectives requires

precise information on expected duration of life at later ages, duration of illness,
disability by seriousness and information on recovery rates. Moreover, the pro-
cedures must be sufficiently robust to enable the investigator to assess changes
over time as well as differential across social groups. The latter is strategic step
as it permits to compare the results of conditions leading to potentially different
courses of longevity, onset of illness, and disability and recovery. The contro-
versy about declining disability in the US, for example, is not centered around
large discrepancies in observed quantities but, quite the contrary, on somewhat
fragile contrasts which could be due to real changes or to artifacts produced
by period effects, slightly different definitions of disability, treatment of institu-
tionalized populations (Freedman et al., 2004) or, alternatively, to violations of
assumptions on which the basic measures are based.

2.2 Assessing size of demand and associated costs

Knowing currently or projected durations in different health status is the ba-
sis for estimating aggregate long term care and health services demand at the
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population levels (Monteverde,2004; Mayhew, 2000). This information can be
directly retrieved from Sullivan type of estimates. In addition, one may want
more precise knowledge at the individual level about the exact timing of tran-
sitions for accurate estimates of present value of expected costs and insurance
premia for individuals (Haberman and Pitacco, 1999). This information, how-
ever, cannot be retrieved from Sullivan type of estimates but may be caclulated
from the output of procedures such as PMM. This justifies the implementation
of alternative methods to those suggested by Sullivan, and this is the reason
why in this paper we do not limit ourselves to examine behavior of Sullivan’s
procedure only. Whether the estimates are at the aggregate or individual levels,
they are useful to forecasting the resources needed to treat ill individuals and
to provide services to disabled people throughout the duration of their disabil-
ity. The evaluation of aggregate or individual costs requires either estimates of
expected duration in each health state or of transition rates. When these are
combined with different types of services of long-tern care they yield a gross es-
timate of the resources required by one individual throughout his/her expected
duration of life. Without the estimation of duration (or transition rates), this
exercise is simply not feasible. It is quite obvious that the robustness of cost
estimates is directly related to the robustness of estimates of expected durations
in various health statuses (or transitions rates).Whether these calculations are
needed for state based programs or to assess the feasibility of private insurance
schemes, there is little alternative to the estimation of accurate measures of
mean duration of life in various health status.

2.2.1 Methods of estimation

Alternative methods and models have been used to measure simultaneously
mortality, disability and morbidity with the explicit objective to contrast em-
pirically the conjectures identified above. Broadly speaking there are three dif-
ferent ways of doing so. First, there is the so-called Sullivan or prevalence-rate
model (Sullivan, 1971). It is the simplest of procedures and the one requiring
the least amount of information. The price one pays for its simplicity is to
be at the mercy of the accuracy of some simplifying assumptions (see below).
The second procedure is one that relies on cross sectional information to de-
rive transition rates thus removing at least one of the assumptions on which
Sullinvan’s methods rests but introducing, in turn, a new assumption which
may or may not be accurate (Rickayzen and Walsh, 2002; Monteverde, 2004).
While these two methods are indirect ways to obtain estimates of expectancies,
the third one is direct. This consists of the application of increment-decrement
life tables to a simplified multistate model from which estimates of expected
durations in various states can be readily obtained. In theory, this is the proper
way of evaluating the parameters we are interested in but, as is well-known,
estimation of increment decrement life tables requires knowledge of transitions
rates at least at one point in time (Katz, Branch, Branson, Papsidero, Beck
and Greer, 1983; Rogers, Rogers and Brach, 1989; Pollard, Golini and Milella,
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1990; Rogers, Rogers and Belanger, 1989; Rogers, Rogers and Belanger, 1990;
Land, Guralnick and Glazer, 1994; Robine and Mathers,1993; Lievre, Brouard
and Heathcote 2003). Reliable estimation of multistate life tables needs large
samples and longitudinal observation, requiring expensive study designs and
have been implemented in only a few places. If nothing else but two waves of a
panel study are available, the robustness of estimates associated with increment-
decrement life tables will depend on the accuracy of the stationarity assumption
(in addition to the size sampling variability). Table 1 identifies each method
and the assumptions on which they are based.

Table 1 about here

Since restrictions on data collection are likely to persist for a long time in
most countries in the world, it is important to have an idea, if only approximate,
of errors associated with violations of assumptions underlying indirect methods
of estimation of life expectancy in various health status. Knowledge of the
magnitude, direction and distributional properties of errors and the conditions
under which they are produced can help mitigate interpretational problems or,
at the very least, lead to inferences that are explicitly contingent on known or
estimated levels of uncertainty. This will enable us to assign adjusted weight
to evidence invoked to confirm or reject interpretations about the course of
morbidity and mortality, on the one hand, and to design more realistic cost
scenarios to project long term care or health services needs, on the other.

2.3 Previous research on evaluation of methodologies

Ours is by no means the first nor the most original attempt to examine the
matter of errors associated with simplified procedures to assess expected dura-
tion of life in various health status.However, despite a large number of studies

investigating the properties of various estimators, there is no comprehensive
evaluation of comparative robustness of alternative methods to violations of all
the three basic assumptions identified above. For example, while some studies
explictly address problems posed by lack of stationarity, they consider neither
the relevance of mortality differentials (homogeneity) nor the effects of non-
zero recovery rates (absence of recovery). Others focus only on the impact of
recovery rates but ignore departures from homogeneity. In what follows we
summarize what is known about the behavior of Sullivan types of estimates, the
most studied within the literature.
In a number of papers Rogers and colleagues (Rogers, Rogers, and Belanger,

1990; Rogers, Rogers and Belanger, 1989; Rogers, Rogers and Branch, 1989)
have correctly pointed out that ignoring the possibility of recovery can lead
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to a pessimistic bias in the expected durations in the healthy status. They
use simple multistate models and estimate increment decrement tables to show
the differences between these estimates and those that derive from either Sulli-
van’s method or a less used but equally plausible double decrement table. An
important point made by these authors is that the cross sectional prevalence
rates do indeed reflect, in one way or another, the presence of recovery (see
also Crimmins, Saito and Hayward, 1993). But, it should be understood that
even under conditions of stationarity, prevalence rates cannot be an accurate
reflection of the duration structure of the population by health status at any
age. The precise conditions under which this is so remain to be studied.
A comprehensive assessment of sensitivity of Sullivan type of estimates was

carried out by Robine and Mathers (1993). In this exercise the authors are
mostly interested in the effects of changing rates on the estimates. They focus
on the identification of age patterns of disability, recovery and mortality that
are consistent with a given set of observed prevalence rates. The patterns of
disability, mortality and recovery thus identified are considered to be realistic
in that they produce a given set of prevalence rates. They then use simulations
to reproduce various scenarios combining varying recovery and disability rates.
Because they do have information on transition and prevalence rates they are
able to compare Sullivan type of estimates to those derived from increment-
decrement tables. They conclude that for realistic scenarios, "the difference
between the estimates produced by the two methods is small and that Sul-
livan’s method is acceptable for monitoring trends in health expectancies for
populations", though they acknowledge that this conclusion is more applicable
to long term trends that to short term estimation. Finally, it is not clear from
this exercise if their conclusions hold at all when there are either constant or
varying mortality differentials by health status or when recovery rates change
over time.

Another comparison between Sullivan type of estimates and those obtained
from the application of multistate methods was carried out by Saito, Crimmins
and Hayward (1991; see also Crimmins, Hayward and Saito, 1993). But the
conclusions from this study address an issue that is somewhat different from that
related to the robustness of Sullivan’s types of estimates. Indeed the authors are
more interested in showing that calculations using multistate life table methods
are sensitive to the instability of observed transition rates in conventional two-
wave panel studies, the basic inputs for the associated estimates of expected
duration. This is a valid point since a proper comparison between estimates
from life table methods and Sullivan procedures must take into account the all
sources of variability affecting them, not just departures from assumptions. In
the exercise we perform in this paper we take into account stochastic variation
and comparisons between one and the other types of estimates are carried out
examining the behavior not just of point estimates but also of the standard
deviations associated with the increment-decrement procedures. However valid
the issue raised by these authors may be, it does not by itself lead to a proper
evaluation of deviations from assumptions made when implementing Sullivan’s
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method.

Finally, in a very thorough simulation exercise Lievre, Brouard and Heath-
cote (2003) take issue with the value of Sullivan’s estimate for verification of
theories regarding the compression (expansion) of morbidity. They remark that
although Sullivan’s estimates can lead to reasonable accurate assessments, they
may also lead to misleading conclusions in the absence of stationariy as the mo-
mentum of various cohorts with different experiences of mortality, disability and
recovery are reflected in cross-sectional prevalence and mortality rates. Theirs
is a call for caution when using period measures (such as Sullivan’s estimates)
when in fact the researchers want to make inferences regarding the evolution
over time of disability and mortality. This objection can also be made when
comparisons involve various social groups, rather than trajectories over time.
Although the above mentioned studies do indeed confirm the value of cross

sectional estimates of life expectancy in disability and health, they also point to
the existence of weaknesses. Unfortunately, in none of them there is a systematic
evaluation of biases (and corresponding variances) associated with departures
from each of the three basic assumptions. For example, although as shown in
Appendix 1, homogeneity is required for unbiasedness, in none of the studies is
one able to derive an estimate of error when heterogeneity of risks prevails, as is
more likely to occur in empirical cases (Lievre, Broaurd and Heathcote, 2003).
And what if mortality differentials are combined with the presence of recovery
rates? And what if lack of stationarity in mortality rates as well as in mortality
differentials act in concert with changing recovery rates?
An important point that deserves consideration is that researchers are not

just interested in evaluating expectancies in one place and one point in time but
they frequently seek inferences from comparisons across groups at a single or at
several points in time. To the extent that departures from key assumptions lead
to biases in point estimates, they inevitably infleunce measures of differentials
across groups or over time. Depending on the conditions generating the ob-
servables, the errors can be smaller, equal or larger than those associated with
point estimates. In this paper we do not pursue the study of differentials but do
caution that our conclusions may apply with equal or more force to measures
of differentials.

3 Methodology

3.1 A simple multistate model

We start with a simple model to describe the trajectories of individual histories
under a variety of scenarios. Figure 1 identifies the states and transitions be-
tween states that are of interest to us. Individuals aged x pertaining to a cohort
born t-x years ago start in the H (healthy) state and may move to an absorbing
state (M) via mortality rates (µ(x, t − x)) or to the disabled state (D) via a
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disability rate (τ(x, t− x)). A sojourn in D can end either via recovery rates (
λ(x, t−x )) or through mortality rates of disabled individuals (ϕ(x, t−x)). This
model is not new and was suggested by other researchers concerned about the
measurement of disability (Rogers et al., Manton and Stallard, 19, Haberman
and Pitacco, 1999; Pollard, Golini and Milella, 1990). The notation we pro-
pose makes explicit that rates are functions of age (x) and birth cohort (t-x).
Although all rates defined above could also be made dependent of duration of
sojourn, we will eschew this complication since it clouds matters and can exert
a more pernicious effects. Thus, estimates of errors provided here must be con-
sidered as conservative one. To simplify matters and without loss of generality
we will assume that all individuals start in H and that the ages of interest are
in the range 60-99 years1.

Figure 1 about here

The assumptions invoked by Sullivan’s procedure have three precise implica-
tions. First, the assumption of stationariy implies that all rates can be expressed
as a function of age (x) only and that one can ignore the birth cohort, namely,
µ(x, t−x) = µ(x), τ(x, t−x) = τ(x), ϕ(x, t−x) = ϕ(x) and λ(x, t−x) = λ(x).
The assumption of homogeneity of risks implies that ϕ(x) = µ(x).Finally, the
assumption of absence of recovery implies that λ(x) = 0 at all relevant ages.
It is possible to show analytically (see Appendix 1) that in the absence of sta-
tionarity, the assumptions of homogeneity of risks and absence of recovery are
sufficient to produce unbiased estimates of duration in disability with Sullivan’s
procedure. It can also be shown that the introduction of heterogeneity of risks
leads to a bias the magnitude and direction of which is a function dominated by
the ratio of mortality risks between healthy and disabled individuals (Palloni,
2004). However, this bias as well as the one generated when the assumption of
absence of recovery is removed are not easily calculated except in the simplest
case. Their precise magnitude and distributional properties can only be gauged
via numerical simulations. The same conclusion applies to the PMM procedure.
As indicated above, the literature on the topic has placed almost exclu-

sive emphasis on violations to stationarity and absence of recovery while de-
emphasizing the potential consequences of deviations from homogeneity. The
latter, however, can be as serious a threat as the other two and lack of robustness
of Sullivans as well as the PMM procedure due to lack of homogeneity should
not be ignored.

1Assuming that all individuals start out in state H at age 60 is a simplification. However,
because we simulate a very large number of individual trajectories, the ultimate distribution
of the population by health status only depends on the rates, not on the initial distribu-
tions.Furthermore, assuming that there is no disability at the first age we consider in the
simulations will downplay the errors generated by mortality differentials and the presence of
non-zero recovery rates.
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3.2 The simulation model: definition of scenarios

We use GENESIS a program designed by Douglas Wolf and written by Jon
(Wolf, 1988; Wolg and Jonhson, 1992) to simulate multistate hazard models.
We define a number of scenarios to assess errors associated with deviations from
the assumptions of homogeneity and absence of recovery or from a combination
of the two. In all cases, the scenarios assume stationarity.
Each simulation contains the health trajectories of 10,000 individuals start-

ing at age 60 in the healthy state and ending at age 99. The resulting trajectories
are then summarized via calculation of "observed" transition rates, estimation of
an increment-decrement table and the corresponding life table functions, includ-
ing expected years of life, expected years of life in the healthy state, expected
years of life in disability and the fraction of all years lived in each state. All
functions are evaluated in the age interval 60-99. The trajectory of each cohort
can then be described with the simple increment-decrement tables and all its as-
sociated functions, including rates and conditional probabilities of moving from
one state to another at any age. These are the quantities one would observe
if true longitudinal data across several cohorts were available to us. They are
used to calculate the "true" values of expected number of years in health and
disability.
We then construct tables of counts of transitions and exposure by age and

the corresponding total mortality rates and prevalence of disability rates that
would be observable if all we had available was cross-sectional information on
the population. In essence this amounts to have for each age x, the number of
healthy individuals, the number of disabled individuals and, finally, the number
of people who died at a particular age. No information is assumed about the
initial conditions of individuals who die. Using these observables we implement
two procedures to estimate life expectacny with disability.

3.2.1 Sullivan’s approach

The first procedure corresponds to the well-known Sullivan calculations that
yield marginal expectancies in various states. This method only requires infor-
mation on the product of the complement of prevalence rates in the age interval
x, x+1 and the number of persons years lived in the same interval from a sin-
gle decrement (overall mortality) life table to allocate years of disability free
life expectancy. The resulting partition of the Lx values of the life table can
be aggregated to yield estimates of marginal life expectancies in various states.
These are calculated as follows:

EH
x =

P
x Lx(1− Px)

ED
x =

P
x LxPx
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where Lx is the estimated number of years lived in the interval (x,x+1) in
a life table with mortality rates µ(x) and Px isthe observed prevalence rate of
disability in the age interval; (x,x+1).

3.2.2 The PMM approach

The second and less known procedure (PMM) uses the observed prevalence
rates and the overall mortality rates in a cross section and proceeds to estimate
the transition rates from H to D. Its main assumption is that the transition from
D to H is zero. The reason we include this procedure in our evaluation is that it
too can be valuable since it enables the investigatgor to escape the apparently
tight constraint imposed by Sullivan’s procedure when assuming no mortality
differentials by health status. But it, as does Sullivant’s procedure ignores the
existence of recovery rates. If the latter were inconsequential but violations to
homogeneity carried the day, a shift from Sullivan method to PMM would be
called for. But if both are sensitive to the presence of non-zero recovery rates,
no such shift would resolve the problem. The nature of PMM is fully described
in Appendix 2 but we provide the essential ingredients here.
The new technique’s objective is to generate estimates of transition rates

from a cross section. In doing so, it removes some of the restrictive assumptions
on which Sullivan method is based at the expense of introducing new albeit
somewhat weaker ones. In a nutshell, this procedure requires cross-sectional
prevalence rates and overall mortality rates by age. Although this is no dif-
ferent from Sullivan’s procedure, the utilization of these quantities is since the
main goal of the new technique is to derive estimates of all the transition rates
rather than to only calculate estimates of life expectancy in disability. The tech-
nique starts out from qx , the overall conditional probability of dying within the
interval (x, x+1). It then uses tx, the equivalent of Px, the prevalence rate of
disability in the interval x,x+1. It is reasonable to assume that (Haberman and

Pitacco, 1999) qHD
x = wx

qDDx
2 , where qDD

x is the probability of dying within
one year for those who are disabled; wx is the probability of becoming disabled
within one year, and qHD

x is the probability of dying within one year and as
disabled for those starting in state H. One can also specify the relationship be-
tween qHH

x and qDD
x from real data, where qHH

x is the probability of dying
in state H for those who start out the one year interval in H. Defining qx as a
function of the previous probabilities and given that qx and px = 1 − qx are
known, one can estimate all the necessary transition probabilities.
An increment decrement table representing transitions in the multistate sys-

tem depicted in Figure 1 cannot be estimated unless one has available infor-
mation on the rates associated with each transition. This is frequently what
is lacking in cross-sectional data. However, one can use the conditional proba-
bilities approximated as suggested above to estimate the associated increment-
decrement tables and thus the marginal expectancies in the health and disabled
states. To distinguish it from the true increment decrement table associated
with each simulated population, we will refer to the one associated with the
PMM procedure as the ”indirect” increment-decrement table.
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Errors associated with each simulation are evaluated comparing estimates
produced by Sullivan and the PMM method for each simulated population to
the "true" values derived from the associated true increment-decrement table.
For each scenario we repeat the simulations 200 times, a sufficiently high number
to generate Monte Carlo variation but also small enough to proceed with some
speed in a reasonable fast computer. The final result is a set of differences
between estimates and true values and their distribution in 200 simulations for
each scenarios. The latter are defined below

3.2.3 Scenarios Ia and Ib: Heterogeneity of mortality risks

We use estimates of mortality risks of healthy and disabled individuals from the
1998 and 2000 waves of Health and Retirement Survey (HRS). To calculate these
rates we define as disabled any individual experiencing an ADL or IADL and
as healthy as any individual with absence of both ADL and IADL. A Gompertz
function was fitted to both sets of observed rates and these were used as the
baseline mortality pattern in the simulation. The parameters of each function
are in Table 2 and the predicted rates are displayed in Figure 2. The observed
transitions from the healthy state to disability were also graduated with a Gom-
pertz function whose parameters are displayed in Table 2. Figure 2 displays the
corresponding fitted values. All the equations fit relatively well as the values of
R2 exceed .80 for mortality rates of healthy and disabled individuals as well as
for disability rates.
The baseline scenario is one where we force the equality ϕ(x) = µ(x). Sce-

nario Ia is one where the mortality differential is mild (the ratio of the Gom-
pertz level parameters of ϕ(x) relative to µ(x) is about 2.3 at age 75) and
Scenario Ib is one where the mortality differential is large (the ratio of the
Gompertz parameters is 6.9 at age 75).

3.2.4 Scenarios IIa and IIb: recovery rates are non-zero

The next scenario allows recovery rates to be non zero. Baseline rates for re-
covery rates were estimated from the 1998 and 2000 waves of HRS. As was the
case for disability rates, the observed values were graduated with a Gompertz
function whose parameters are also displayed in Table 2. Figure 2 displays the
fitted values. The equation for recovery fits less well than the other ones as the
R2 is of the order of 0.63. Scenario IIa was defined as one where ϕ(x) = µ(x)
and where the recovery rates are identical to those in Figure 2. Scenario IIb
was generated with the same recovery rates and the large mortality differential.

Table 2 about here
Figure 2 about here
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3.3 Measurement of errors

In order to assess the magnitude and direction of biases, we use two types of
errors, the squared root of the quadratic error and the absolute values of the
relative error. All errors are calculated using estimates and true parameters at
each age within the range considered here (60-99). Thus, for each simulated
population we obtain 40 values for the quadratic errors and 40 for the absolute
value of the relative error. The distribution of errors for a given age over the
range of simulations will thus contain 200 observations. Each one of these dis-
tributions is characterized by the its mean value and its standard deviation. We
take the mean as a measure of the bias inherent in the procedures (Sullivan’s or
PMM method) while the standard deviation is an index of stochastic variability.
A large coefficient of variation associated with a given scenario suggests that
biases are small relative to stochastic variation whereas a small value of the
coefficient of variation indicates the opposite pattern. To simplify presentation
we will only discuss the relative errors. Examination of quadratic errors leads
to very similar conclusions.

4 Results

In what follows we evaluate the absolute values of relative errrors (AVRE) as well
as their standard deviations (over the set of 200 simulations) for each scenario.
The main results for selected ages are presented in Tables 3a to 3e.

Tables 3a-3e about here

For the PMM procedure we produce two sets of results: the first set is ob-
tained under the assumption that there are no mortality differentials between
healthy and disabled populations (denoted as PMM1) whereas the second as-
sumes the existence of a differential equal to the one that generates simulated
populations with a mild mortality differential (denoted as PMM2). We calcu-
late these to investigate whether or not under ignorance about the magnitude of
heterogeneity of risks there is a pay off in trying to guess it or, alternatively,
whether the errors induced by incorrectly guessing the size of differentials are
larger than if one would have simply used the simpler Sullivan procedure.
Figure 3 displays the errors (figures on the left) and standard deviations

(figures on the right) by method and for each one of five scenarios described
above. The graph enables us to compare magnitude and direction of errors
across methods within a particular scenario. Figure 4, on the other hand, dis-
plays errors in a slightly different way: each graph shows the patterns of error
for a single method thus allowing us to judge the magnitude and direction of
errors across scenarios for a given method. Because the magnitude of relative
errors and the behavior of the methods are very different at very old ages (over
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90), we choose to display separately some figures for two broad age intervals,
60-90 and over 90.
Finally, Tables 4a to 4e display the coefficients of variation for selected ages

obtained from each method and within each simulated scenario.

Tables 4a-4e about here
Figures 3, 4 and 5 about here

4.1 Comparison of methods

As expected, we find that in the baseline scenario (Figure 3, row 1, no mortality
differences and no recovery) the magnitude of errors is small for both procedures
provided that the PMM method is applied assuming no mortality differences
(PMM1). The errors associated with Sullivan procedures are slightly higher but
never exceed 1 percent and are well within the bounds of stochastic variability.
The errors increase quite sharply above age 95 and this is certainly due to the
fact that calculated rates from simulated data become very unstable at these
ages as the population exposed to events has thinned out considerably. The
increase in these errors should be taken as a simple warning suggesting that
calcualtions of estimates at these ages is failry hazardous even if assumptions
are met rigorously. In scenario Ia (Figure 3, row 2, low mortality differences
between disabled and non disabled people and no recovery), the errors are also
small (close to one per cent) for both PMM2 (Pseudo Multistate Model calcu-
lated assuming mild heterogeneity in mortality risks) and Sullivan’s procedure.
As in the baseline scenario, errors at very old ages are quite large but more so
for Sullivan procedure than for PMM2.
When mortality rates for disabled people are significantly higher than mor-

tality rates for healthy individuals as it happens in Scenario Ib (Figure 3, third
row) the error for both the Sullivan’s methods and PMM2 increases significantly
and can reach values as high as 8 to 10 percent for Sullivan procedure and as
high as 15 percent for PMM2. Paradoxically the PMM2 procedure—which led
to estimates that assume differential mortality-produces errors that are worse
than those generated by the simpler procedure suggested by Sullivan. The val-
ues for PMM2 were calculated using a mild mortality differentials not a high
one. This shows that if the assumption about mortality differentials made in
the implementation of the PMM2 procedure is off target, it will lead to worse
errors than if one ignored altogether the existence of mortality differentials.
Scenario IIa is the first scenario with recovery (Figure 3, row 4). In it we

assume no mortality differences and therefore, the errors associated with the
procedures are solely attributable to violation of the assumption about absence
of recovery. The errors appear to decrease with age, a possible consequence of
the fact that recovery rates too decrease sharply with age and are never larger
than 5 percent in all cases. Estimates of the PMM1 type lead to errors that
are larger than those associated with Sullivan procedure but not by much and
the differences are well within the bounds of stochastic variability. Thus, for
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example, whereas the average error at age 60 is 3.4% for Sullivan’s method, it
is about 4.8% for PMM1 (Table 3d). However, the standard deviation of the
errors is relatively sizeable and a simple test of statistical significance would lead
to a rejection of the hypotheses that the two procedures produce significantly
different results.

Assuming the existence of both recovery and large mortality differences, as
is done in Scenario IIb (Figure 3, row 5) leads to somewhat different patterns.
First, the maximum magnitude of errors grows somewhat in size as values can
grow to be close to 10 or 11 percent. Second, a comparison of Sullivan’s method
with the PMM2 procedure suggests, here again, that the latter yields much
larger errors. Furthermore, Sullivan’s procedure produces errors of lower mag-
nitude than uder Scenario IIa. Although this may seem paradoxical, it can
be explained by the fact that the existence of recovery should attenuate the
importance of mortality differentials as individuals are, one average, exposed to
both mortality regimes.
Two remarks are important. First, in almost all cases the behavior of the

standard deviations of errors mirrors closely the behavior of the errors them-
selves, in age patterns as well as in magnitude. Indeed, as shown in Tables
4a-4e the coefficients of variation associated with each scenario and method are
centered around 1. This suggests that errors induced by deviations from as-
sumptions are of magnitude similar to the variance produced by Monte Carlo
variation. Second, in general and up to age 95, the errors in the estimation of
life expectancy with disability when using Sullivan’s method are small (close
to one per cent absolute relative error). Only for the simulated scenario which
assumes recovery (Scenario IIa) for younger ages, are the errors associated
with Sullivan’s method higher (about 3.4% at age 60). In general, in scenarios
IIa and IIb as age increases the errors decrease as well, mirroring the decreas-
ing pattern of recovery rates. But at older ages (over 95) Sullivan’s method
produces very large errors (see Figure 5).

4.2 Comparison of scenarios

We now examine the behavior of errors associated with each method by type of
scenario. The two graphs in the first row of Figure 4 display the errors associated
with Sullivan type of estimates in each of the scenarios we simulated. The plot
on the left compares scenarios that assume mortality differentials (Ia and Ib)
with the baseline scenario. The plot on the right compares scenarios that assume
the existence of positive recovery rates from disability to the healthy state (IIa
and IIb) with the baseline scenario. In the second and third rows, we show the
same comparisons for PMM1 and PMM2, respectively.
The results show that in all cases errors in the estimation of life expectacy

with disability using the Sullivan method are small, at least until age 95. The
errors are higher when heterogeneity of risks is large (Scenarios Ia and Ib).
For example, at age 80, when we assume mild mortality differentials and no
recovery (Ia) the average error (AVRE) for Sullivan’s method is about 1.3% (see
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Table 3b). On the other hand, when we the simulated population experiences
involves a large mortality gap between healthy and disabled (Ib), the average
error is twice as large ( 2.7%, see Table 3c). These are modest errors but only
apply to ages below 95. Beyond that age errors grow above 10 percent
Figure 5 shows the performance of Sullivan’s method in two broad age

groups, namely 60 to 90 years of age and 91 years and above. For the first
age group the errors associated with Sullivan types of estimates are lower in a
scenario with recovery and when risks are heterogeneous (large mortality dif-
ferentials). As mentioned before, a plausible explanation for the robustness
of Sullivan’s estimates in this case is that the presence recovery compensates
for the higher mortality gap: the higher the recovery rate is the higher the
proportion of individuals that die in the healthy state, and therefore the lower
the effect of a mortality differentials between healthy and disabled individuals.
Nevertheles, this compensation effect is influenced by the magnitude of the dis-
ability rates. To the extent that disability rates are high there would still be a
large number of individuals who experience disability, even with a large recovery
rate. As a consequence, the effect of over mortality among disabled individuals
will have a larger influence on the error of the estimates (which do not account
for this mortality gap). Given that the largest recovery rates are located in the
age groups with lowest disability rates, we should expect stronger offsetting of
errors in the younger ages (60 to 90 years), as it is the from the results displayed
in Figure 5.
For the older age groups, (aged 91 years and above) the offsetting effects

weaken and the errors grow much larger under Scenario IIb. This results
is consistent with the previous reasoning since it is these older groups that
experience lower recovery rates so that the effect of a large mortality gap between
disabled and healthy individuals becomes dominant precisely among them.
Figure 4, row 2, displays the behavior of errors associated with PMM1. For

this method, the Scenario Ia implies low errors in the estimation of life ex-
pectancy with disability. An important point is that this precision is maintained
even at older ages where Sullivan’s method begins to produce poor results.Under
the more realistic scenarios (IIa and IIb) including recovery, errors are about
6% for younger ages but performance deteriorates at older ages.
Errors associated with PMM2 are displayed in the third row of Figure 4.

The estimates behave in a similar way as do estimates obtained via PMM1,
but the magnitude of errors is higher when the mortality gap is larger than
the gap assumed by PMM2. Clearly, PMM2 is not as robust as Sullivan’s
estimates to underestimation of mortality differentials between disabled and
healthy individuals. It seems ill-advised to use PMM2 unless one is certain to
capture well the true value of mortality heterogeneity.

5 Summary and conclusions
We study the performance of Sullivan’s method and that of a new approach
to estimate life expectancy with disability. The new approach differs from Sul-
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livan’s in that it relies on an approximation of transition probabilities, rather
than on the direct estimation of life expectancy with disability. We evaluate
relative errors under violations of two of the three crucial assumptions on which
these procedures rely: absence of recovery and homogeneity of risks. The main
conclusion seems to be that the magnitude of errors is modest, even under the
worse case scenario of departure from the basic assumption regarding homogene-
ity of risks. Errors are large, but still within tolerable levels, in populations with
non zero rates of recovery. However, both methods tend to perform badly at
very old ages though part of the poor performance is a matter of stochastic vari-
ability due to instability associated with low number of observations. Specially
remarkable is the fact that Sullivan’s method performs well, even in situations
that combine heterogenity of risks and non-zero recovery rates. Naturally, errors
grow larger when the magnitude of the mortality differentials increase but one
would need very sizeable heterogenity of risks to produce errors exceeding 10
percent. The PMM procedure performs as well as Sullivan’s method but only
when the underlying mortality differential is guessed correctly. Otherwise, its
robustness breask down. This seems to indicate that under ignorance regarding
the precise magnitude of mortality differentials, one should always prefer Sulli-
van procedure. Of special notice is the fact that the presence of recovery rates
tends to offset the errors induced by heterogeneity of mortality risks, the more
so in ages where recovery tends to be of higher intensity.

Not all of this is good news, however. First, it should be remembered that we
ignore throughout violations to the assumptions of stationarity, an assumptions
that other researchers have thought could lead incorrect estimates. Undoubt-
edly lack of stationarity in mortality, recovery and disability rates may combine
to expand the magnitude of errors shown above. Of particular relevance is the
issue of non stationarity in recovery rates, a phenomenon likely to occur under
regimes of rapidly changing medical technology. Second, we did not consider
at all the existence of attrition due to causes other than mortality. One con-
sequential source of attrition is institutionalization of the elderly, a mechanism
through which individuals are removed from the observed population. To the
extent that this occurs selectively by health status, it will only compound the
errors calculated before. Finally, Sullivan estimates have been used extensively
to compare different subgroups or even to compare the conditons in different
periods of time. Both types of contrast mat be grossly in error if, for example,
conditions are violated to different extent in subgroups or within certain peri-
ods of time. Thus, estimates of differential life expectacies in disability could
be very fragile, more so than those associated with a population as a whole or
with a single period of time.

This simulation exercise can be summarized with a few prescriptions that
only hold under stationarity. First, by an large Sullivan’ estimates perform well
even under gross violations of assumptions but not always at older ages. Second,
the PMM method also performs well when there is risk heterogeneity provided
that the initial guess about mortality differentials between disabled and healthy
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is correct. Otherwise, it leads to errors that can be larger than those associated
with Sullivan’s procedure. However, it should be remembered that the PMM
procedure yields quantities other than expected durations in disability. Yet in
this paper we have not evaluated errors in estimated transitions rates for the
PMM procedure and thus we cannot make statements about its desirability even
when target quantitites are not expected durations only. Third, large mortality
differentials between disabled and healthy can and do produce relatively sizeable
errors with either procedure. And so do the existence of non-zero recovery
rates. Yet, the combination of these and large mortality differentials generate
offsetting effects that prevent the occurrence of worse errors than under each
scenario separately.
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Table 1: Summary of Methodologies to Estimate Expectancies in Health and
Disability

Method Assumptions Data Required

Sullivan Homogeneity of risks Cross Sectional Mortality Rates
Stationarity Cross Sectional Prevalence Rates
Absence of recovery

PMM Stationarity Cross Sectional Mortality Rates
Absence of recovery Cross Sectional Prevalence Rates
Known mortality
differentials

Increment-

Decrement (I) Stationarity Limited (Two waves) Panel Data

Increment-
Decrement II —————– Full Longitudinal Information



 

TABLE 21 

Estimation results for the Gompertz Models  
Age over 60 years 

 Healthy Mortality 
rate 

Disabled Mortality 
rate 

Rate of becoming 
disabled 

Recovery rate 

Intercept 1.5900E-05** 
(7.3974E-06)   

0.0004**  
(0.0019)  

0.0006* 
(0.0001) 

2.4603** 
(0.9865) 

b1 
0.0981* 
(0.0059) 

0.0656* 
(0.0055) 

0.0650* 
(0.0030) 

-0.0395* 
(0.0051) 

     
R Square 0.8872 0.7952 0.9280 0.6325 
F (1,35) 275.4339 - - 60.2407 
F (1,36) - 139.7722 463.9160    - 
P Value 0.0000 0.0000 0.0000 0.0000 

 * Statistically significant at the one percent level (two tail test) 
 ** Statistically significant at the five percent level (two tail test) 
(1) All regression were fitted to data for ages from 60 to 99 and the form of all the regressions was  
ln y(x) =a+bx where y(x)is the rate at age x and x is the age. The parameter “intercept” above is exp(a) and 
is the parameter level of the Gompertz whereas the parameter b1 is the slope of the Gompertz curve 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
TABLE 3a  

Absolute Value of Relative Error  
In Expected Duration of Disability and Standard Deviation 

Baseline Scenario: No Differences Mortality and No Recovery   
Age AVRE_SM SE_SM AVRE_PMM1 SE_PMM1 AVRE_PMM2 SE_PMM2 
60 0.009308 0.009221 0.005141 0.005113 0.007561 0.007504 
65 0.009527 0.009436 0.005272 0.005243 0.007569 0.007511 
70 0.010018 0.009917 0.006520 0.006477 0.008494 0.008422 
75 0.010650 0.010537 0.008239 0.008171 0.009804 0.009708 
80 0.011068 0.010945 0.009659 0.009565 0.010820 0.010703 
85 0.010678 0.010564 0.009780 0.009684 0.010644 0.010530 
90 0.009166 0.009081 0.008063 0.007998 0.008878 0.008799 
95 0.008292 0.008202 0.005106 0.005079 0.007107 0.007045 

AVRE: Absolute Value of Relative Error 
SE: Standard Error 
SM: Sullivan’s Method 
PMM1: Pseudo Multistate Model (no mortality differences) 

      PMM2: Pseudo Multistate Model (mortality differences)  
 

 
 
 

TABLE 3b  
Absolute Value of Relative Error  

In Expected Duration of Disability and Standard Deviation 
Ia Scenario: Low Mortality Differences and No Recovery  

Age AVRE_SM SE_SM AVRE_PMM1 SE_PMM1 AVRE_PMM2 SE_PMM2 
60 0.008765 0.008689 0.007245 0.007190 0.010208 0.010103 
65 0.009063 0.008981 0.007616 0.007557 0.010588 0.010475 
70 0.009853 0.009756 0.009146 0.009062 0.012060 0.011914 
75 0.011069 0.010947 0.011194 0.011068 0.013913 0.013719 
80 0.012546 0.012388 0.013180 0.013006 0.015512 0.015271 
85 0.013682 0.013494 0.014144 0.013943 0.015946 0.015691 
90 0.013632 0.013443 0.013041 0.012870 0.014461 0.014250 
95 0.013060 0.012860 0.009425 0.009334 0.011993 0.011834 

AVRE: Absolute Value of Relative Error 
SE: Standard Error 
SM: Sullivan’s Method 
PMM1: Pseudo Multistate Model (no mortality differences) 

      PMM2: Pseudo Multistate Model (mortality differences)  
 
 

 
 
 
 
 
 
 
 
 
 
 



TABLE 3c  
Absolute Value of Relative Error  

In Expected Duration of Disability and Standard Deviation 
Ib Scenario: High Mortality Differences and No Recovery  

Age AVRE_SM SE_SM AVRE_PMM1 SE_PMM1 AVRE_PMM2 SE_PMM2 
60 0.011253 0.011127 0.028947 0.028099 0.036361 0.035035 
65 0.012179 0.012031 0.030120 0.029207 0.038189 0.036728 
70 0.014621 0.014407 0.033631 0.032496 0.043611 0.041708 
75 0.019114 0.018748 0.039054 0.037525 0.052383 0.049637 
80 0.026983 0.026255 0.046956 0.044746 0.065697 0.061378 
85 0.040321 0.038692 0.056961 0.053695 0.085553 0.078226 
90 0.062861 0.058891 0.062791 0.058655 0.114764 0.101564 
95 0.099321 0.089231 0.058058 0.053886 0.151656 0.128412 

AVRE: Absolute Value of Relative Error 
SE: Standard Error 
SM: Sullivan’s Method 
PMM1: Pseudo Multistate Model (no mortality differences) 

      PMM2: Pseudo Multistate Model (mortality differences)  
 
 
 
 
 

TABLE 3d  
Absolute Value of Relative Error  

In Expected Duration of Disability and Standard Deviation 
IIa Scenario: No Mortality Differences and Recovery 

Age AVRE_SM SE_SM AVRE_PMM1 SE_PMM1 AVRE_PMM2 SE_PMM2 
60 0.034236 0.033063 0.048141 0.045816 0.049200 0.046776 
65 0.031472 0.030481 0.042713 0.040885 0.044286 0.042323 
70 0.026166 0.025481 0.034314 0.033134 0.036882 0.035521 
75 0.020522 0.020100 0.026608 0.025899 0.030258 0.029341 
80 0.015318 0.015083 0.020536 0.020113 0.025051 0.024423 
85 0.011351 0.011222 0.016313 0.016046 0.021366 0.020908 
90 0.009150 0.009064 0.013154 0.012979 0.018715 0.018362 
95 0.009199 0.009085 0.008478 0.008392 0.017481 0.017154 

AVRE: Absolute Value of Relative Error 
SE: Standard Error 
SM: Sullivan’s Method 
PMM1: Pseudo Multistate Model (no mortality differences) 

      PMM2: Pseudo Multistate Model (mortality differences)  
 
 
 

 
 
 
 
 
 
 
 
 
 



 
TABLE 3e 

Absolute Value of Relative Error  
In Expected Duration of Disability and Standard Deviation 

IIb Scenario: High Mortality Differences and Recovery 
Age AVRE_SM SE_SM AVRE_PMM1 SE_PMM1 AVRE_PMM2 SE_PMM2 
60 0.017181 0.016885 0.061088 0.057334 0.061722 0.057903 
65 0.011607 0.011472 0.051399 0.048742 0.052918 0.050113 
70 0.003461 0.003448 0.038531 0.037035 0.042799 0.040964 
75 0.002914 0.002905 0.028955 0.028108 0.037933 0.036492 
80 0.005766 0.005731 0.024422 0.023816 0.040207 0.038588 
85 0.002737 0.002726 0.026256 0.025547 0.051701 0.049023 
90 0.010609 0.010473 0.032595 0.031416 0.074392 0.068835 
95 0.040548 0.038622 0.042569 0.040232 0.111271 0.098610 

AVRE: Absolute Value of Relative Error 
SE: Standard Error 
SM: Sullivan’s Method 
PMM1: Pseudo Multistate Model (no mortality differences) 

      PMM2: Pseudo Multistate Model (mortality differences)  
 



 
TABLE 4a  

Coefficient of Variation 
Baseline Scenario: No Differences Mortality and No Recovery 

Age SM PMM1 PMM2 
60 0.9907 0.9946 0.9923 
65 0.9905 0.9946 0.9924 
70 0.9900 0.9934 0.9915 
75 0.9893 0.9917 0.9902 
80 0.9889 0.9903 0.9892 
85 0.9893 0.9902 0.9893 
90 0.9907 0.9919 0.9910 
95 0.9891 0.9947 0.9914 

SM: Sullivan’s Method 
PMM1: Pseudo Multistate Model (no mortality differences) 

      PMM2: Pseudo Multistate Model (mortality differences)  
 

 
TABLE 4b  

Coefficient of Variation 
Ia Scenario: Low Mortality Differences and No Recovery 

Age SM PMM1 PMM2 
60 0.9912 0.9924 2.6040 
65 0.9909 0.9922 2.4206 
70 0.9901 0.9908 4.5662 
75 0.9889 0.9888 3.9022 
80 0.9874 0.9868 0.7850 
85 0.9863 0.9858 0.2721 
90 0.9862 0.9869 0.0930 
95 0.9847 0.9904 0.0273 

SM: Sullivan’s Method 
PMM1: Pseudo Multistate Model (no mortality differences) 

      PMM2: Pseudo Multistate Model (mortality differences)  
 
 

TABLE 4c  
Coefficient of Variation 

Ib Scenario: High Mortality Differences and No Recovery 
Edad SM PMM1 PMM2 

60 0.9887 0.9707 0.9635 
65 0.9878 0.9697 0.9618 
70 0.9854 0.9663 0.9564 
75 0.9809 0.9609 0.9476 
80 0.9730 0.9529 0.9343 
85 0.9596 0.9427 0.9144 
90 0.9369 0.9341 0.8850 
95 0.8984 0.9282 0.8467 

 SM: Sullivan’s Method 
 PMM1: Pseudo Multistate Model (no mortality differences) 

       PMM2: Pseudo Multistate Model (mortality differences)  
 

 
 
 
 



 
TABLE 4d 

Coefficient of Variation 
IIa Scenario: No Mortality Differences and Recovery 
Edad SM PMM1 PMM2 

60 0.9657 0.9517 0.9507 
65 0.9685 0.9572 0.9557 
70 0.9738 0.9656 0.9631 
75 0.9795 0.9733 0.9697 
80 0.9847 0.9794 0.9749 
85 0.9886 0.9836 0.9786 
90 0.9906 0.9867 0.9812 
95 0.9876 0.9898 0.9813 

 SM: Sullivan’s Method 
 PMM1: Pseudo Multistate Model (no mortality differences) 

       PMM2: Pseudo Multistate Model (mortality differences)  
 
 
 

TABLE 4e 
Coefficient of Variation 

IIb Scenario: High Mortality Differences and Recovery 
Edad SM PMM1 PMM2 

60 0.9828 0.9385 0.9381 
65 0.9883 0.9483 0.9470 
70 0.9964 0.9612 0.9571 
75 0.9968 0.9707 0.9620 
80 0.9940 0.9752 0.9597 
85 0.9959 0.9730 0.9482 
90 0.9872 0.9638 0.9253 
95 0.9525 0.9451 0.8862 

   SM: Sullivan’s Method 
   PMM1: Pseudo Multistate Model (no mortality differences) 

         PMM2: Pseudo Multistate Model (mortality differences)  
 
 



 
FIGURE 1 

STATES AND TRANSITIONS IN A MULTIPLE STATE MODEL OF DISABILITY 
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FIGURE 2  
Observed and fitted values for the Gompertz Models 
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FIGURE 3 
Absolute Value of Relative Error (AVRE) in Expected Duration of Disability 

and Standard Error (SE) 
Comparisons of Methods 
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     DLE: Disabled life expectancy. 
     SM: Sullivan’s Method; PMM1: Pseudo Multistate Model (no mortality differences); PMM2: Pseudo Multistate Model 

(mortality differences).  



      
FIGURE 3 (cont.) 

Absolute Value of Relative Error (AVRE) in Expected Duration of Disability 
and Standard Error (SE) 
Comparisons of Methods 
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     DLE: Disabled life expectancy 
     SM: Sullivan’s Method; PMM1: Pseudo Multistate Model (no mortality differences); PMM2: Pseudo Multistate Model 
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FIGURE 4 
Absolute Value of Relative Error  

In Expected Duration of Disability 
Comparisons of Scenarios 
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FIGURE 5 
Absolute Value of Relative Error  

In Expected Duration of Disability 
Scenarios: Baseline, IIa and IIb   
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Appendix 1

In what follows we show that if the assumtpion of stationary and absence of recovery

prevail, a sufficient condition for Sullivan’s estimates to be unbiased is that the force of
mortality among diasbled be identical to that of healthy individuals (homogeneity of risks).
Let ux be the force of mortality at x for healthy, ux be the force of mortality at x for

disabled and rx be the force of disability at x.
The number of persons years lived as disabled is given by:

LxD  
x

x1 
0

z
exp 

0

y
uv  rvdv ryexp 

y

z
uvdv dydz.

Assume that Lx (number of persons years lived in total) can be evaluated within x,x  1 at
point z, x  z  x  1,

LxD  
0

z
exp 

0

y
uv  rvdv ryexp 

y

z
uvdv dy.

If ux  ux we have,

LxD  
0

z
exp 

0

z
uvdv ryexp 

0

y
rvdv dy

 exp 
0

z
uvdv 

0

z
ryexp 

0

y
rvdv dy

 LzQzD ,

where Lz is the number of persons years lived in total life table at z and QzD is the
probability of becoming disabled by age z in the absence of mortality (single decrement
table).
To complete the demonstration we only need to show that when ux  ux the observed

prevalence of disability at any age z x  z  x  1, namely Pz, equals QzD .
The prevalence of disability in age z is:

Pz  Nz
Nz  Nz

,

where Nz is the number of disabled in age z and Nz is the number of non-disabled in
age z.

Pz 

0

z exp 
0

y
uv  rvdv ryexp 
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z uvdv dy

exp 
0

z
uv  rvdv  Nz

where Nz is the numerator of Pz.
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The denominator of the previous expression equals 1 in the single decrement table where
only disability operates as a decrement. Thus

Pz  
0

z
exp 

0

y
rvdv rydy  QzD .

This proves that when there is no recovery, when stationarity prevails and when ux 
ux (homogeneity of risks), Sullivan’s calculations based on the producst LxD  Lx  Px are
correct. Thus, homogeneity of risks is a sufficient condition for the robustness of Sullivan’s
type of estimates .



Appendix 2. The Pseudo Multistate Model 
 
We denote by qx the annual probability of death for an individual of age x, from any initial state. We 
will suppose that this probability is fixed and known. We will take the raw mortality rates provided by 
the HRS. We denote by tx the probability of being disabled estimated from the disability prevalence 
rate at age x, which will be obtained from the same survey. 
 
The probability of a person aged x dying before reaching age x+1 can be calculated: 

,)1()1( DD
xx

HD
xx

HH
xxx qtqtqtq +−+−=  (1) 

with HH
xq  the probability of dying within one year, the death occurring in state H; HD

xq  and DD
xq the 

probabilities of dying within one year, the death occurring in state D. 
 
In the same way, px (probability of a person aged x surviving up to age x+1) can be calculated as:  

.)1()1( DD
xx

HD
xx

HH
xxx ptptptp +−+−=  (2) 

with HH
xp  the probability of keeping in good health at age x+1, HD

xp  and DD
xp the probabilities of 

surviving as disabled at age x+1. 
 
The fundamental relations between the previous probabilities can be found in Haberman and Pitacco 
(1999, p. 96).   
 
Following (1) some assumptions can be made to approximate the transition probability of dying before 
reaching age x+1 for a healthy person of age x (death occurring in the disability state), HD

xq . In a 
similar way, we can establish some hypothesis to calculate the probability of dying before reaching 
age x+1 for a healthy individual of age x (death occurring in the healthy state), HH

xq  . In this sense, 
two assumptions are defined: 
 

  - Assumption 1.1  
 ,10; 11 ≤<= kwithqwkq DD

xx
HD
x  and wx the probability of becoming disabled within one 

 year ( HD
x

HD
xx qpw += ). 

 - Assumption 1.2 
 .0

1 DD
x

xbHH
x qebq =  

 
In both cases, we use the probability of death for a disabled individual of age x, DD

xq , and the 

probability of becoming disabled between x and x+1, xw  to calculate HD
xq and HH

xq , respectively. In 

Haberman and Pitacco (1999), .
2

DD
x

x
HD
x

qwq =   

 
Assumption 1.1 can be justified in terms of the distribution of the age at disability onset. On the 
particular case, the factor ½ follows from the assumption of a uniform distribution of age at onset in 
the interval (x,x+1). Assumption 1.2 has been established to set a relationship between the two 
probabilities, HH

xq  and DD
xq , as it is derived from the HRS results. It is generally accepted that the 

probability of dying is greater for a disabled than for a healthy person. An exponential function for 
HH
xq / DD

xq  is specified. 
 
The number of disabled people in age x+1 is equal to the number of disabled people in x that reach age 
x+1 plus the number of healthy people in x that survive to x+1 in the disability state. Therefore, 
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By means of substituting Assumption 1.1 in expression (3) we obtain the probability of becoming 
disabled between x and x+1 as: 
 

.
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DD
xxxx

x −−
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= +  
        (4) 

 
On the basis of Assumptions 1.1 and 1.2, and the expression (1), we obtain the probability that a 
disabled individual of age x dies before reaching age x+1 as: 
 

xxx
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xii
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       (5) 

 
From (4) and (5), for fixed values of k1, fitted values of b0 and b1, and given xq  and xt , we can obtain 

DD
xq  and xw . Firstly, we need to solve the following equation: 
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 (6) 

 
Once DD

xq  is obtained, HD
xq and HH

xq  follow from the equalities in hypothesis 1.1 and 1.2. It can be 
shown that if expression (6) has two real solutions, both of them are positives, but only one of them 
will always be in the interval (0,1).  
 
Finally, we obtain the probability that a healthy individual of age x survives as healthy up to x+1, the 
probability that a health individual of age x survives up to x+1 (but becomes disabled during this 
period) and the probability that a disabled individual of age x survives as disabled up to x+1, by means 
of: 
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