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With substantial declines in child mortality over the past few decades, increasing 
importance is being placed on the measurement of adult mortality. While there have been 
substantial investments in the measurement of child mortality through survey and census 
programmes, there have been relatively less intensive efforts devoted to improvements in 
adult mortality and to its measurement. Complete vital registration systems are still far 
off for most low-income developing countries despite the fact that reliable baseline 
measures of adult mortality are needed for key programmes on the adult health agenda. 
Estimates derived from sibling survival histories in household surveys have not been used 
widely and are generally considered to be underestimates of true mortality. Currently 
applied methods have been shown to provide reliable mortality rates under two 
assumptions: 1) that there is independence in probabilities of death within families; that is 
that siblings all share the same probabilities of death; and 2) that probability of death is 
not related to family size. The effects of these assumptions on biasing the true mortality 
rates have not been explored in the literature.   
 
In this paper, we develop a new method to estimate mortality rates of a population of 
interest using data on survival of relatives, from household surveys. Our proposed 
method does not rely on the assumption of independence. Using a simulated population 
in a simplified context we introduce our notation and show how the probability of death 
for a period of interest can be computed from data collected through a survey at the end 
of the period of interest. We then explore how the current method and our proposed 
method perform in estimating true mortality rates in a population under various scenarios 
of violation of the two assumptions of independence. 
 
Methods / Framework for measurement  
Let j (j = 1, . . . ,N) denote an index for an individual randomly selected (with equal 
probability and with replacement) from a population group of interest at time 1. Denote 
by Bj the number of siblings in the family of respondent j (including responding j) at the 
Beginning of the period (or “Born” into the group at time 1), Sj the number of siblings in 
the family of respondent j who Survive to time 2, and Dj the number who Die by time 2, 
so that Bj = Sj +Dj . The proportion of those who die in this family is the mortality rate, 
calculated as Mj = Dj/Bj = (Bj − Sj)/Bj.  
 
We are interested in drawing a sample of survivors at time 2 to infer the mortality rate or 
other quantities from the full sample identified at time 1; we model this by imagining that 
the full sample is drawn at time 1 from the population but is then pruned via death to 
yield the time 2 population. That is, selecting only survivors from the random sample at 
time 1 is equivalent to a random sample at time 2 from the population of survivors. Using 
τ for quantities that are inestimable and π for those that are estimable (via simple 



averages) from survey data collected at time 2, denote the probability distribution (or 
histogram of the population) of the number of survivors: 
 

 

where  is the conditional distribution of the number of surviving 
siblings among those at time 2, such that  and τ is the (unobserved) 
probability of a time 1 family having s siblings surviving to time 2. 
 
We define the family sizes at time 1 among families with s surviving siblings at time 2 
as 
 

 
 
where can be estimated by the histogram of family 
sizes of those observed at time 2. For any (fixed) number of surviving siblings s (2) 
represents a proper probability distribution and so for example 

. 
 
To compute the distribution of the mortality rate we first compute the joint distribution 
of S and B: 
 

 
 
which is a discrete distribution and so the condition 0 ≤ m < 1 is, to be more precise, 
m = 0, 1/b, 2/b, . . . , (b − 1)/b. 
 
We now define the quantity of interest. To do this in an informative way, we first 



define dj as 1 if respondent j dies between time 1 and 2. Thus, the quantity of interest, 
the probability of death (or the proportion of those in the population who die) for all 
people in the interval from time 1 to time 2, is 

 
where the first expression is the standard definition, the second defines q for a sample 
with one respondent per family (f = 1, . . . , F), and the third is defined for the family 
mortality rate at the respondent level. This third definition will prove useful in our 
correction to samples drawn at time 2. The respondents randomly selected with equal 
probability from the population at time 1 each provide information about all family 
members or, in other words, family-level information about B, S, and M (e.g., Mj = Mj

’ 
for all j and j’ that are members of the same family). Thus, we can view each draw of an 
individual equivalently as a draw of a family selected with probability proportional to Bj . 
For example, families with five siblings are represented in the population with five times 
the frequency, and thus have five times the sampling weight, as a family with one sibling. 
 
We now turn to sampling at time 2, and introduce index i (i = 1, . . . , n) for respondents 
that have survived to time 2 and thus appear in the time 2 sample (n ≤ N). Sampling at 
time 2 generates two key problems. The first is that selecting respondents at time 2 with 
equal probability is equivalent to sampling families proportional to Si rather than Bi. 
Fortunately, both quantities are known for all observations sampled, and so to return to 
the desired Bi weighting, we replace the simple average of Mj in the last expression in (7) 
with the weighted average of Mi, using weight , 
which would be equivalent except for the problem to which we now turn. 
 
The second problem with the sample drawn at time 2 is that families with no survivors (Si 
= 0) are not represented at all, and so we have no chance of weighting to recover the full 
information. To be more precise, the missing information is the total number of siblings 
in families with zero survivors, and it needs to be added to both the numerator and 
denominator of the weighted average since Bi = Di. 
 
We factor this quantity into Nττ , where  is the expected number of siblings 
in families without survivors. Since N is unobserved, we substitute: Using the fact that 

the time 2 sample size is n = N − τN, we solve for N = n/(1 − τ ) and thus use as 
our expression for the total number of siblings who died in families with zero survivors, 
leaving our estimator, conditional on τ and , as 

 
No certain or directly estimable information about the quantities τ and  exist in a sample  
drawn at time 2, but it turns out significant statistical information does appear to exist. 
We thus extrapolate information about these quantities from information in the sample. 



To do this, we first compute the proportion of families with k survivors (for k = 1, 2, . . . ) 
and fit a model predicting this with k; we then use the same model to extrapolate these 
back to the value of τ given k = 0. Similarly, we compute the average number of siblings 
with k survivors (k = 1, 2, . . . ), fit a model that predicts this with k, and extrapolate back 
to  given k = 0. In the data we have examined, the fit of a model for is very good, and 
we find if we set aside data for one (otherwise observed) value of k > 0, we can predict 
this with a high degree of accuracy. This procedure of course offers no guarantees, but in-
sample empirical evidence makes us optimistic. The model for estimates of τ do not fit as 
well, but the variability in q, due to changes in estimates of τ and  within the range of 
what is empirically plausible based on the data, is relatively small. 
 
Our ultimate estimator is then (8) with these estimates for τ and  substituted in. 
Standard errors or confidence intervals can be computed via bootstrapping. 
 
Simulation 
We simulate a population at time 1, under certain fertility assumptions. We then expose 
the population to probabilities of dying. At time 2 we take a survey (or a census) of the 
population and estimate the probability of dying, using only information available at time 
2. We estimate two probabilities of death, the one outlined above using our proposed 
method and the currently used in the literature (deaths over population at the start of the 
interval, excluding the respondents from the denominator).  
 
There are six parameters that are flexible in our simulated population: 

1. fertility rate 
2. average mortality rate 
3. correlation of mortality rate with family size at time 1 
4. correlation of mortality rate within families 
5. distribution of siblings across age groups 
6. sample size at time 2 

 
This simulation environment allows us to test how the estimates derived from the two 
methods deviate from the truth as the parameters in the simulation change. The method 
currently employed by the literature assumes parameters (3) and (4) to be equal to 1, that 
is that mortality is not related to family size and that all members of the same family have 
the same probability of dying. This method also is based on the assumption that siblings 
are spaced close together, that is that most siblings in a family would fall into one broad 
(15 year) age group. The method we are proposing in this paper does not make any 
assumptions about parameters (3), (4) and (5). We expect our method to better recover 
the true probability of dying as we modify parameters (3), (4), and (5).  
 
We also plan to test how the two methods perform under different fertility and mortality 
scenarios. We will explore fertility and mortality patterns currently observed in sub-
Saharan Africa in countries with an advanced HIV/AIDS epidemic, as well as South-East 
Asia and Latin America. Finally, we will explore how the two methods perform when 
different sample sizes are drawn at time 2, ranging from samples that would be expected 
in a population survey to a full census. 
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