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Abstract

The pediatric paradox, lower African American infant mortality at low birth
weights, is traditionally viewed from the marginal distribution of birth weight.
Similar findings have not been reported based on the marginal distribution of
gestational age. This paper examines the pediatric paradox in terms of birth
weight by gestational age, using covariate density defined mixtures of logistic
regressions, fitted to New York State birth cohorts 1985-88. The results indicate
that the pediatric paradox is isolated in a subpopulation of births accounting for
less then 20% of the total birth cohort. The phenomenon is not limited to low
birth weight births as is usually reported. It also occurs at normal birth weights
with low gestational ages. Finally, the results are consistent with the hypotheses
that higher fetal losses may be responsible for the pediatric paradox and African

American/European American infant mortality differentials are underestimated.



Introduction

It is commonly observed that low birth weight African American births
tend to have better survivorship then low birth weight European American
births (North and MacDonald 1977; Buehler, Kleinman et al. 1987; Johnson 1987;
Sappenfield, Buehler et al. 1987; Wilcox and Russell 1990; Gage, Bauer et al. 2004;
Platt, Ananth et al. 2004; Gage, Bauer et al. submitted). This phenomenon has
been called the “pediatric paradox” based on the assumption that aggressive
medical intervention is likely to be most effective for low birth weight infants,
and that minority populations are less likely to have access to these medical
services (Wilcox and Russell 1990). The recent development of surfactant
treatment for respiratory distress syndrome is a case in point. It has proven
more effective at reducing mortality among low birth weight European
American births to a greater extent then among low birth weight African
American births reducing or even reversing the traditional advantage of low
birth weight African Americans with respect to respiratory distress syndrome.
(Frisbie, Song et al. 2004). It is possible that this treatment has reduced the
relative advantage of low birth weight African American infants due to all
causes, however, examination of post surfactant treatment birth cohorts still
clearly display the pediatric paradox (Platt, Ananth et al. 2004; Gage, Bauer et al.
submitted). Thus the paradox remains and grows increasingly counter intuitive.

The paradox is not limited to African versus European American
comparisons. It has been widely documented with respect to birth weight in
other minority populations e.g. Hispanic Americans (Frisbie, Forbes et al. 1996),
Asian Americans (Yip, Li et al. 1991), as well as, a variety of “stressed” versus
“non-stressed” populations, smokers versus non-smokers, twin births versus
singleton births, low versus high altitude births, first born versus higher order
births, and low versus high social class (Buekens and Wilcox 1993). The ubiquity

of the pediatric paradox among “stressed” versus “non-stressed” populations



suggests that the phenomenon may be a general result of stress. Gage and
colleagues (Gage, Bauer et al. 2004; Gage, Bauer et al. submitted) have
hypothesized that the paradox might be due to differential fetal loss, that is, that
higher fetal loss in a “compromised” subpopulation selects an otherwise more
robust birth cohort. The same mechanism could explain why surfactant
treatment is more effective among European then African American infants, that
is, the African American infants that would be helped by surfactant treatment
may not survive to live birth. There is some evidence that fetal loss is higher in
African Americans (Kallan 1993; Buck, Shelton et al. 1995). However, fetal loss is
difficult to measure accurately. Despite the attention paid to the pediatric
paradox over the years, the ultimate cause of the pediatric paradox remains
unexplained.

Most recent studies of infant mortality condition births on gestational age
as well as birth weight. While gestational age clearly influences birth weight,
gestational age also appears to have an independent effect on mortality
(Lubchenco and Koops 1987; Wilcox and Skjoerven 1992; Corry 1997).
Interestingly, however, a pediatric paradox with respect to gestational ages is
seldom reported (see (Platt, Ananth et al. 2004) for a rare example). No paper
has reported on the pediatric paradox while modeling births by both birth
weight and gestational age as continuous variables. The aim of this paper is to
model the African versus European American pediatric paradox with respect
birth weight and gestational age using covariate density defined (CDD) mixtures
of logistic regression. This technique, a) differs from previous analyses in that
birth weight and gestational age are modeled on a continuous scale and b) is

capable of controlling for unobserved heterogeneity in infant mortality.



Data and Methods

The data used in this analysis consists of African and European American
female and male birth cohorts from New York State, 1985-1988. Multiple births,
births without matching parental racial identification, and births missing birth
weight or gestational age were eliminated from the analysis. Gestational ages
reported in the New York State data are truncated at 49 completed weeks. The
characteristics of these birth cohorts are summarized in Table 1.

Table 1 about here

The model employed is a population based Covariate Density Defined
(CDD) multivariate mixture of logistic regressions. This is a multivariate
extension of the model proposed by Gage (Gage 2002)and Gage et al (Gage,
Bauer et al. 2004; Gage, Bauer et al. 2004; Gage, Bauer et al. submitted). It differs
substantially from the standard finite mixtures of logistic regressions (Wang
1994; McLachlan and Peel 2000), and from the generalized growth mixture
regression models of Muthen (Muthen 2004) and others, because the CDD
mixture is parametrically specified. The CDD multivariate Gaussian mixture of
logistic regressions for the two subpopulation cases is defined as the joint density
of the covariate vector (X), birth weight (x1) by gestational age (x2), and the
occurrence of death (y):

JX =[x, 5,1 y:,0)= f(y 1 X;5,6) X f(X;6) 1
The birth weight by gestational age density, f(X;6), is given by:
[(X:0=(0",0?.1)=2xN(X,0" =(1,,2) +(1-7)XN(X;:0® =(1,.%,)) 2
with 7, the mixing proportion, defined as the proportion of births belonging to
the multivariate Gaussian density accounting for the larger proportion of the
birth cohort. This subpopulation is labeled 1 and called the primary (P)
subpopulation. The remaining subpopulation is labled 2 and referred to as the
secondary (S) subpopulation. For the i=1 to 2 subpopulations, N(X;8"” = (u,X,))is

a multivariate Gaussian density function truncated at [0.0, 0.0] with mean vector
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4 = [t,.1,,] and variance-covariance matrix £, =L o P ,‘0','10','2}. The
covariance terms represent the correlation between gestational age and birth
weight. The probability of death conditioned on birth weight by gestational age
is:

FOo=UX;B=(B".F).0)=qX:0)xP(X; )+ (1= q(X;0)x P(X; f7) 3
In the general case, both birth weight specific infant mortality and gestational age
specific infant mortality are assumed to be U shaped. The interaction term
between birth weight and gestational age represents the impact on mortality of
the combined effect of birth weight and gestational age, over and above the
independent effects of birth weight and gestational age. Therefore, an infant of
covariate vector X in the i» subpopulation has probability of dying given in
quadratic logistic form:
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Finally ¢( X ;6 ) is the probability that an infant of covariate vector X belongs to
subpopulation 1. The birth weight by gestational age density submodel
determines that

o TXN(X;6")
T N8+ (- DX N (X6 5

The mixing proportion, 7, has been transformed as o0 =1logit(7) to remove the 0.0
to 1.0 bounds on m. All together there are 23 parameters, 11 defining the mixture,
and 12 defining subpopulation-specific mortalities (Table 2).
Table 2 about here
The model is fitted to individual level data by the method of maximum
likelihood. In particular, we use the ms() function in Splus to minimize the
negative log likelihood of equation 1. Standard hierarchical methods and bias

corrected confidence intervals are used to evaluate the significance of each



parameter and identify the parsimonious model. The hierarchical methods use
the standard likelihood ratio criterion. Bias corrected confidence intervals are
obtained by bootstrap methods. Two bootstraps of 100 repetitions each are
generated from the original data and then fitted to the model (Equation 1). The
tirst set of bootstraps is used to estimate the mean bias of the fitting procedure,
while the second set of bootstraps defines the confidence interval. For additional
statistical details, proof of identification and properties of the model see (Gage,

Bauer et al. 2004; Fang, Stratton et al. submitted; Gage, Bauer et al. submitted).

Results

The mixture submodel separates the birth cohort into two subpopulations
(Table 3 and Figure 1). These are each represented by the concave (bell-shaped)
density surfaces presented in Figure 1a and b. In this case the full mixture
submodel is parsimonious (Fang, Stratton et al. submitted) Gage MV. The
primary subpopulation accounts for 82% and 84% of the African American
female and male birth cohorts and 88% and 87% of the European American
female and male birth cohorts. The primary subpopulation includes the majority
of births by definition, however this component accounts for a significantly
larger proportion of the birth cohort among European American compared to
African American births (Table 1). Within each population, the primary means of
birth weight and gestational age are higher compared to the secondary means of
birth weight and gestational age. These means tend to be higher among
European Americans versus African Americans of the same sex. Racial
comparisons of the secondary subpopulation indicate similar patterns (Table 3).
Within populations, the primary variance is small compared to the secondary
variance, which is much larger. Across populations, the primary variances are
similar, although the standard deviation of birth weight is slightly smaller and

gestational age slightly larger among African Americans. Finally, within



populations the correlation between birth weight and gestational age is lower
among primary births then among secondary births. African American births
have significantly lower primary correlations but similar secondary correlations
compared to European Americans on a sex specific basis (Table 3). As a result, in
all populations, the primary subpopulation tends to be concentrated in the
normal birth weight by gestational age range, while the secondary
subpopulation accounts for most low birth weight, and/or short gestational age
births. In addition the secondary subpopulation accounts for most large
(macrosomic) births and births with excessively long gestational ages. Thus the
secondary subpopulation accounts for all of the categories of birth traditionally
considered to be “compromised”, i.e. low birth weight, premature, [IUGR, post-
mature, macrosomic, and SGA. It is important to note, however, that some
secondary births occur within the normal birth weight by gestational age range.
The secondary subpopulation also accounts for implausibly heavy infants for
gestational age, which occur at relatively high birth weights at gestational ages
shorter then 30 completed weeks (). The total birth weight by gestational age
density of births is presented in Figure 1c.
Table 3 about here
Figure 1 about here

The mortality results for each subpopulation are presented in Table 4 and
Figure 2. The results suggest that mortality is typically U-shaped with respect to
both birth weight and gestational age. In most cases the interaction terms are not
significant, while in a few cases, the squared terms are not significant and an L-
shaped mortality curve is parsimonious (Table 4). The results are convex (bowl-
shaped) mortality surfaces (Figure 2). In general, within populations, birth
weight by gestational age specific secondary mortality is lower than primary
mortality except in the normal birth weight by gestational age range where
optimal mortality occurs and secondary exceeds primary mortality except among

African American males. Among African American males secondary mortality is



always lower (Table 5). On the other hand, total secondary mortality (crude
secondary mortality) is often an order of magnitude higher then total primary
mortality (crude primary mortality) (Table 5). This is an example of Simpson’s
paradox. The total mortality surface (Figure 2c) is not a simple bowl-shape. In
fact there is evidence of multiple optimal birth weight-gestational ages (Fang,
Stratton et al. submitted). This could be due to the births with misstated
gestational ages.

Table 4 about here

Figure 2 about here

Table 5 about here

Comparisons of African versus European mortality surfaces by sex

indicate that the pediatric paradox is due entirely to the secondary
subpopulation (Figure 3). Primary mortality is significantly higher among
African American births compared to European Americans of the same sex
except in the low birth weight-normal gestational age range (IUGR range), where
there are very few primary births (Figure 3a). Similarly, secondary mortality is
significantly lower among African American births throughout the area where
most secondary births occur including within the normal birth weight and
gestational age range (Figure 3b). Combined primary and secondary mortality
(Figure 3c) indicate that within the normal birth weight by gestational age range,
African American mortality is higher, but out side the normal birth weight by
gestational age range, African American mortality tends to be lower. This
suggests that the pediatric paradox includes not only low birth weight births but
premature, normal birth weight births, and post mature normal and macrosomic
births. The birth weight by gestational age extent of the pediatric paradox has
been over looked in previous analyses based only on birth weight.

Figure 3 about here

While the pediatric paradox is visible from the marginal distribution of

birth weight (Figure 4), it is not visible from the marginal distribution of



gestational age (Figure 5). Thus the presence of the pediatric paradox among
normal birth weight infants with abnormally short and long gestational ages is
obscured in both marginal views. The pediatric paradox tends to be strongest
(that is African American mortality is lowest relative to European American
mortality) at low birth weight at all gestational ages, but particularly at low
gestational ages. On the other hand, there is no gestational age where the
pediatric paradox occurs at all birth weights. Hence the pediatric paradox is not
visible from the marginal view of gestational age. All of these results indicate
that the pediatric paradox is due entirely to the secondary subpopulation. In fact
these results suggest that the pediatric paradox also occurs among normal birth
weight and gestational age secondary births (Figure 3b). This is obscured by the
predominance of primary births in this region of the birth weight by gestational
age distribution

Figure 4 about here

Figure 5 about here
Discussion.

One limitation of this multivariate CDD mixture of logistic regression
model of infant mortality is the use of gestational age. We use mother’s last
menstrual period (Imp) to estimate gestational age. (Fang, Stratton et al.
submitted). Gestational age is more often missing then birth weight (Table 1)
and poorly measured (refs). In particular, there are a relatively large number of
births at implausibly large birth weights at gestational ages less then 30
completed weeks. These could represent births to mothers mistaken about the
date of their last menstrual period due forgetfulness or post conception bleeding
etc. One advantage of the CDD mixtures of logistic regression method is that
these births are isolated in the secondary subpopulation. In fact they can be
identified using the same Gaussian mixture model used as the mixture submodel

in CDD mixtures of logistic regression (Gage, Bauer et al. submitted)



The results presented above are consistent with most other analyses of
birth weight using parametric mixture models (Fryer, Hunt et al. 1984; Gage and
Therriault 1998; Gage 2000; Gage 2003) and CDD mixtures of logistic regression
(Gage 2002; Gage, Bauer et al. 2004; Gage, Bauer et al. 2004; Fang, Stratton et al.
submitted; Gage, Bauer et al. submitted). In general, the primary subpopulation
accounts for 80% or more of births, and has a relatively high mean birth
weight/ gestational age, and relatively small variance in birth weight/gestational
age. The secondary subpopulation is notable for its very large variance.
Consequently, this subpopulation accounts for the majority of births who are
classified as “compromised” using traditional methods, low birth weight,
premature, IUGR, post-term, macrosomic, and SGA, although it also accounts
for births in the normal birth weight/ gestational age range. Clinitions have often
argued that “compromised” births do occur in the normal birth weight by
gestational age range but are understudied since they can not be identified using
traditional criterion (). The implausably large births for gestational age may be
completely “normal” if the error is due to simple forgetfulness or possibly
“compromisded” if the error is due to post conceptual bleeding. As a result it is
generally assumed that many if not most secondary births were “compromised”
in some way during fetal development (Fryer, Hunt et al. 1984; Gage and
Therriault 1998).

The results presented above are also consistent with other estimates of
mortality based on CDD mixtures of logistic regressions of infant mortality
(Gage 2002; Gage, Bauer et al. 2004; Gage, Bauer et al. 2004; Fang, Stratton et al.
submitted; Gage, Bauer et al. submitted). In general, birth weight specific
secondary mortality is lower than birth weight specific primary mortality at most
birth weights and gestational ages, although secondary mortality is sometimes
higher then primary mortality in the normal birth weight by gestational age
range. However, crude secondary mortality is higher by an order of magnitude

compared to crude primary mortality (Table 5). This is not true of gestational



age alone (Gage unpublished analyses). However, it appears to be true of birth
weight by gestational age infant mortality within realistic birth weight and
gestational age ranges. One hypothesis for the lower secondary birth weight by
gestational age specific infant mortality is differential fetal loss. According to
this hypothesis, higher fetal losses among the “compromised” subpopulation
would result in a selected secondary cohort at birth, relatively more robust than
their non-compromised birth weight and gestational age specific peers in the
primary subpopulation.

In any event, the larger secondary subpopulation and generally lower
secondary mortality of African American secondary births, compared to
European Americans are responsible for the “pediatric paradox”. The larger
secondary, “compromised” subpopulation is consistent with a population under
greater stress. Further if the lower secondary birth weight by gestational age
specific infant mortality of African Americans is due to greater fetal loss in the
compromised subpopulation, then this lower mortality among compromised
births also reflects the population under greater stress. There is some
independent evidence that fetal loss is higher among African Americans (Kallan
1993; Buck, Shelton et al. 1995), although fetal loss rates are very difficult to
estimate. Finally, the higher mortality of African American primary births is also
consistent with the population under greater stress. Thus the proximate cause of
the pediatric paradox might be due to heterogeneity in the birth cohort and to
differential fetal loss in the disadvantaged population. Under this hypothesis
the “paradox” of the pediatric paradox is resolved. The cause of the
heterogeneity, and the exogenous determinants that drive this system remain to
be identified. If this interpretation is correct, racial health disparities may be
considerably underestimated (Wilcox and Russell 1986, Gage, Bauer et al. 2004).

The results, interpretations, and methods presented here suggest a
number of limitations of traditional analyses. First, the results suggest that there

are a significant number of “compromised” births within the normal birth weight



by gestational age range. These births, assuming they exist, are under
recognized and understudied because they can not be identified using the
standard classification methods, e.g. low birth weight, short gestational age, or
even small for gestational age (SGA) (Lubchenco and Koops 1987; Wilcox and
Skjoerven 1992; Corry 1997). Second, the proximate cause of the “pediatric
paradox” is entirely due to secondary, “compromised” births. The proximate
cause of this low infant mortality may be fetal loss. However, the ultimate
causes remain to be identified. However, CDD mixtures of logistic regression
can be extended to include additional independent variables, and potential
ultimate causes examined (Gage, Bauer et al. submitted). Third, the proximate
cause of excess African American infant mortality is entirely due to the primary,
“normal” births. The ultimate causes that influence primary mortality are
understudied due to the traditional emphasis on studying low birth weight,
premature and/or SGA births. These factors creating higher primary infant
mortality are not necesisarly the same factors influencing secondary infant
mortality. Further the same factors could have different effects in the normal
and compromised subpopulations. None of these issues can be explored using
traditional statistical techniques, which cannot distinguish between primary and
secondary subpopulations.

These issues can, however, be explored using extensions of CDD mixtures
of logistic regression, since it distinguishes between the primary and secondary
subpopulations and treats them as separate regressions. Covariates representing
exogenous factors may also be incorporated into the analysis on either or both
subpopulations and may condition the birth weight by gestational age densities
or the birth weight by gestational age mortality surfaces (Gage, Bauer et al.
submitted). The CDD mixture of logistic regression method, can in theory
identify the properties of the under studied, “compromised” births found in the
normal birth weight by gestational age range, even it can not discriminate

between “compromised” and “normal” individual births over much of the birth



weight/gestational age range. Nevertheless, the characteristics of these births
can be statically explored using CDD mixtures of logistic regression. Further,
since CDD mixtures of logistic regression treats the two subpopulations as
separate regressions, the exogenous factors (additional covariates) influencing
the low secondary mortality and the exogenous factors affecting excess primary
African American infant mortality can be examined as statistically separate
effects. Consequently, the CDD mixtures of logistic regressions methodology
could greatly improve our understanding of racial and ethnic disparities in

infant mortality.

Conclusions

1. The pediatric paradox is not be limited to low birth weight births. It is
characteristics of all birth weight/ gestational ages outside the normal range.

2. The pediatric paradox is due to the secondary “compromised”
subpopulation and may be driven by fetal loss..

3. Excess African American infant mortality is due to the primary “normal”
subpopulation. The role of the primary subpopulation is understudied due
to our emphasis on compromised infants.

4. The African American/European American infant mortality differential
may be significantly underestimated.

5. Finally, Covariate Density Defined mixtures of logistic regressions can be

used to explore these issues.
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Table 1 Descriptive statistics for the sample populations

Mean Missing Data (%)
Birth Cohort # Births # Deaths CDR
bwt gest bwt gest overall
Af. Am.F. 54,968 3119 39.1 690 12.55 0.13 211 2.22
Af. Am M. 57,449 3240 39.1 848 14.76 0.16 2.03 2.19
Eu. Am.F. 255,516 3375 40.0 1294 5.06 0.20 2.04 2.22
Eu. Am. M. 270,189 3507 39.9 1734 6.42 0.21 2.05 2.24

Af. = African, Eu. = European, Am. = American, F. = Females, M. = Males

bwt = Birth weight (grams)

gest = Gestational age (weeks)

CDR = Crude death rate (deaths per 1000 births)



Table 2 Definitions of the model parameters

Symbol Definition

Mixture Submodel Parameters --- ith Subpopulation (i =1 to 2)

T Mixing proportion (% primary subpopulation)

Uit Mean birth weight for the ith subpopulation

Wi Mean gestational age for the ith subpopulation

Gi1 Standard deviation of birth weight for the ith subpopulation

Ci2 Standard deviation of gestational age for the it subpopulation

pi Correlation between birth weight and gestational age for the ith subpopulation

Mortality Submodel Parameters --- ith Subpopulation (i =1 to 2)

(coefficients of a second degree bivariate polynomial)

aj Constant for the ith subpopulation

bi Linear term on birth weight for the ith subpopulation
bi Linear term on gestational age for the ith subpopulation
Cit Square term on birth weight for the ith subpopulation
Ci2 Square term on gestational age for the ith subpopulation

cvi Interaction term on birth weight and gestational age for the ith subpopulation




Table 3 Estimates and 95% confidence intervals for the mixture submodel parameters

Parameter Estimate LCI ucI Estimate LCI ucl
African American Females African American Males
T 0.826 0.836 0.816 0.844 0.852 0.838
Wit 3219 3214 3225 3345 3339 3350
U1z 39.75 39.73 39.76 39.68 39.66 39.70
o1l 450 445 455 462 458 466
o1 1.71 1.67 1.74 1.77 1.75 1.79
p1 0.247 0.236 0.257 0.256 0.245 0.266
W21 2653 2621 2682 2691 2657 2718
U22 36.35 36.13 36.59 36.06 35.84 36.23
o 952 929 971 985 967 1008
o» 5.36 5.26 5.48 5.51 541 5.61
P2 0.49 0.47 0.51 0.50 0.48 0.52
European American Females European American Males
T 0.876 0.880 0.872 0.874 0.879 0.869
W11 3423 3420 3425 3566 3564 3568
Uiz 40.19 40.18 40.20 40.08 40.08 40.09
o1 441 439 443 466 464 467
G12 1.47 1.46 1.48 1.52 1.50 1.53
pP1 0.288 0.284 0.293 0.318 0.314 0.322
W21 3048 3035 3062 3112 3096 3128
U2z 38.95 38.87 39.03 38.62 38.55 38.71
o1 837 824 853 872 858 884
o» 517 5.07 5.27 5.22 511 5.31
P2 0.469 0.457 0.480 0.498 0.486 0.509

LCI = Lower 95% confidence interval

UCI = Upper 95% confidence interval



Table 4 Estimates and bias-corrected 95% confidence intervals for the mortality
submodel parameters

Parameter Estimate LCI ucl Estimate LCI UcCI
African American Females African American Males
a 6.64E+01 1.32E+00 1.24E+02 7.61E+01 3.90E+01 1.06E+02
bu 2.73E-04 -6.38E-03 7.92E-03 -5.52E-03 -1.09E-02  -4.89E-04
cn 9.68E-07 4.68E-07 1.40E-06 9.43E-07 5.77E-07 1.23E-06
b1z -3.56E+00 -6.21E+00  -5.90E-01 -3.57E+00 -5.07E+00  -1.69E+00
c2 5.23E-02 1.61E-02 8.47E-02 4.64E-02 2.06E-02 6.65E-02
cv1 -1.89E-04 -3.76E-04  -1.44E-05 -3.81E-05&+  -1.87E-04 1.31E-04
a2 9.25E+00 6.56E+00 1.17E+01 9.24E+00 6.02E+00 1.32E+01
bx -3.83E-03 -4.72E-03  -3.08E-03 -3.25E-03 -3.95E-03  -2.47E-03
c21 6.58E-07 5.17E-07 7.92E-07 6.92E-07 5.54E-07 8.00E-07
b2 -4.28E-01 -5.74E-01  -2.62E-01 -3.94E-01 -6.51E-01  -1.86E-01
2 6.63E-03 4.01E-03 8.90E-03 6.33E-03 3.15E-03 1.01E-02
cv2 -2.28E-05 & -4.51E-05 3.84E-06 -5.33E-05 -7.73E-05  -2.50E-05
European American Females European American Males

a1 5.74E+01 -3.51E+00  1.15E+02 2.57E+01 -3.12E+01  8.39E+01
b 8.17E-04 -5.46E-03 7.66E-03 -1.66E-03 -6.72E-03 2.99E-03
ci 1.28E-06 9.80E-07 1.51E-06 9.50E-07 6.30E-07 1.25E-06
b1z -3.23E+00 -5.99E+00  -4.10E-01 -1.33E+00 -4.24E+00  1.55E+00
C12 5.19E-02 1.67E-02 8.60E-02 2.24E-02+ -1.52E-02 5.98E-02
vy -2.61E-04 -4.30E-04  -9.71E-05 -1.46E-04 * -2.76E-04  -7.94E-07
az 9.09E+00 7.62E+00 1.06E+01 8.74E+00 7.39E+00 1.01E+01
bx -3.04E-03 -341E-03  -2.65E-03 -3.50E-03 -3.96E-03  -3.09E-03
c21 3.85E-07 3.19E-07 4.48E-07 3.99E-07 3.31E-07 4.69E-07
b -4.19E-01 -5.09E-01  -3.34E-01 -3.38E-01 -423E-01  -2.51E-01
2 5.87E-03 4.50E-03 7.28E-03 4.15E-03 2.61E-03 5.59E-03
v -1.09E-05&+  -2.45E-05 2.36E-06 1.23E-06%&+  -1.33E-05 1.67E-05




LCI = Lower 95% confidence interval
UCI = Upper 95% confidence interval
& = not significantly different from zero based on bias-corrected 95% confidence interval

+ = not significantly different from zero based on hierarchical analysis



Table 5 Optimum Birth weights and Gestational Ages Based on the Full Model

Bicth Cohort Birth Weight (g) Gestational Age (wk) Mortality* at Crude Death

Mean Optimum Mean Optimum Optimum Birth Rate*
Total Birth Cohort
Af. Am. F. 3119 3839 39.1 40.9 2.35 12.00
Af. Am. M. 3240 3748 39.1 40.0 3.37 14.09
Eu. Am. F. 3375 3826 40.0 40.7 1.12 4.75
Eu. Am. M. 3507 4096 39.9 42.0 1.46 6.02
Primary Subpopulation
Af. Am. F. 3219 3869 39.7 41.0 2.31 5.49
Af. Am. M. 3345 3738 39.7 40.0 3.43 6.69
Eu. Am. F. 3423 3825 40.2 40.7 1.08 212
Eu. Am. M. 3566 4211 40.1 43.4 1.33 2.64
Secondary Subpopulation

Af. Am. F. 2653 3580 36.4 38.5 2.88 43.17
Af. Am. M. 2691 4233 36.1 49.0 0.70 54.63
Eu. Am. F. 3048 4503 38.9 39.9 2.23 23.46
Eu. Am. M. 3112 4329 38.6 40.1 3.58 29.49

Af. = African, Eu. = European, Am. = American, F. = Females, M. = Males

* = deaths per 1000 births
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Figure 1. Contour plots of birth weight by gestational age multivariate Gaussian
densities for NYS African American females. The plotted values represent the percent of
the cohort inside the contour. The growth curves, SGA and LGA, represent the 10" and
90™ percentiles based on the observed data, respectively. The cross-hair lines are the
traditional cutoffs for low birth weight (<2500 grams) and premature (<38 completed
weeks) infants. Panel a is the primary density designated by “p” and dot-dashed
contour intervals. Panel b is the secondary distribution designated by “s” and dotted

contour intervals. Panel cis a simulated density of the total birth cohort, solid lines.
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Figure 2. Contour plots of birth weight by gestational age specific mortality (deaths per
1000 births) using a log scale for NYS European American females. Thus a value of 3
indicates 100% mortality. The cross-hair lines are the traditional cutoffs for low birth
weight (<2500 grams) and premature (<38 completed weeks) infants. Panel a is he
primary mortality surface designated by “p” and dot-dashed contour intervals. Panel b

is the secondary mortality surface designated by “s” and dotted contour intervals.

Panel c is the model based total mortality surface..
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Figure 3. Contour plot of the differences of birth weight by gestational age specific
mortality (log deaths per 1000 births) between NYS African and European American
males. The cross-hair lines are the traditional cutoffs for low birth weight (<2500 grams)
and premature (<38 completed weeks) infants. Panel a compares the primary
subpopulations. Panel b compares the secondary subpopulations. Panel ¢ compares
total mortalities. Statistically significant differences in mortality are designated by
contours intervals. The solid contour intervals represent areas where European
American males have lower mortalities than African American males, the dotted
contour intervals represent areas where African American males have lower mortalities

than European American males.
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Figure 4. Difference of marginal birth weight specific mortality (deaths per 1000 births)
between NYS African and European American males: Panel a primary subpopulation;
Panel b secondary subpopulation; Panel c total birth cohort. The dotted lines are the
upper and lower 95% confidence intervals of the differential. The cross-hair line, y =0,
represents no mortality difference between these two ethnic groups. Mortality values
larger than 0 suggest that African American males have a higher birth weight specific
death rate; and mortality values smaller than 0 suggest that European American males

have a higher birth weight specific death rate.
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Figure 4. Difference of marginal gestational age specific mortality (deaths per 1000
births) between NYS African and European American males: Panel a primary
subpopulation; Panel b secondary subpopulation; Panel ¢ total birth cohort. The dotted
lines are the upper and lower 95% confidence intervals of the differential. The cross-hair
line, y = 0, represents no mortality difference between these two ethnic groups.
Mortality value larger than 0 suggests that African American males have a higher birth
weight specific death rate; and mortality value smaller than 0 suggests that European

American males have a higher birth weight specific death rate.
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