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Abstract

We present a new efficient algortithm for construction of grade of membership (GoM) models. This
algorithm reduces a problem of estimation of model parameters to a sequence of problems of linear
algebra, which assures a low computational complexity and ability to handle on desktop computers data
that involve up to thousands of variables.

The class of grade of membership (GoM) models belongs to a family of latent structure models, which, in
turn, is a subfamily of a family of mixed distribution models. Such models naturally occur when a population
of interest is supposed to be heterogeneous.

The most widely used methods for estimation latent structure models are based on maximization of the
likelihood function. These are well established methods possessing many good properties. Nevertheless,
they have limitations, which may restrict or even prevent their usage. First, the number of parameters
to be optimized is proportional to the number of variables (measurements), which in practice limits the
number of variables used in the analysis to several dozens. Second, the likelihood function in the case of
latent structure analysis is often multimodal, which requires usage of additional techniques to ensure that
the absolute maximum is found.

Our algorithm is based on methods of linear algebra, which eliminates the problem of multimodality and
allows us to analyze up to thousands of variables. The time spent by the algorithm is proportional to the
cube of the number of variables.

Basic notions. GoM analysis considers J discrete measurements, represented by a vector of random
variables X = (X1, . . . , XJ ), with the set of outcomes of jth measurement (i.e. the set of possible values of
random variable Xj) being {1, . . . , Lj}. We consider a distribution law of this random vector as a mixture
of independent distribution laws, i.e. distribution laws satisfying

Pr(X1 = l1 ∧ · · · ∧XJ = lJ) =
∏

j

Pr(Xj = lj) (1)

Representation of the observed distribution law as a mixture of independent distribution laws is standard
for latent structure analysis (and it is its defining characteristic).

Due to (1), description of independent distribution law requires only knowing Pr(Xj = lj). Thus, an
independent distribution law may be described by |L| = L1 + · · ·+LJ -dimensional vector β = (βjl)jl, where
j ranges from 1 to J , and for every j, l ranges from 1 to Lj ; βjl = Pr(Xj = l). Let µβ be a mixing measure
producing the observed distribution.
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The main GoM assumption is that for some K, µβ is supported by a K-dimensional linear subspace Q
of R|L|. Later, we refer to this K as to the dimensionality of GoM problem.

This assumption is essentially equivalent to the assumption that there exists a K-dimensional random
vector G such that for every j a regression of Yj on G is linear. Here Yj is an Lj-dimensional random vector,
Yj = 1l if Xj = l (where 1l denotes a vector which has lth component equal to 1, and all other components
equal to 0.) Namely, let Λ = {λ1, . . . , λK}, λk = (λk

jl)jl, be any basis of Q, and for β ∈ Q, let g = (gk)k=1,...,K

be its coordinates in basis Λ. Then the random vector G is the random vector β (distributed according µβ)
written in coordinates g, and matrices Λj = (λk

jl)kl are linear regression matrices.
The linear regression assumption is crucial for understanding the meaning of the GoM model and gives

guidelines for its applicability. It essentially means that the measurements are not chosen arbitrarily but
rather to reflect in some degree a hidden property, or a hidden state, represented by the random vector G.
GoM analysis is about how to discover this hidden state and describe it as precisely as possible.

Let µg be a measure µβ written in coordinates g.
Let ` = (`1, . . . , `J ) be an integer vector with 0 ≤ `j ≤ Lj . Such a vector represents the outcome of J

measurements, and `j = 0 means that we do not take into account the outcome of the jth measurement.
Thus, a value of `j = 0 in a vector ` means that the vector is a marginal vector across all values of the jth

measurement. Let L0 be a set of all such vectors, and for every J ⊆ {1, . . . , J} let L[J ] be a set of vectors
having 0’s exactly on places from J . Let v = (v1, . . . , vK) be an integer vector with vk ≥ 0, and for every
integer J ′ ≥ 0 let V[J ′] be a set of such vectors satisfying the additional condition

∑
k vk = J ′.

In this language, the values of interest are unconditional moments of the distribution µβ

M`(µβ) =
∫ ∏

j : `j 6=0

βj`j µβ(dβ) (2)

and conditional moments of distribution µg,

E(Gv | X = `) =
∫ ∏

k

gvk

k

∏
j : `j 6=0

∑
k gkλk

jl

M`(µβ)
µg(dg) (3)

The unconditional moments M`(µβ) are the probabilities of obtaining the response pattern ` (under
assumptions of the model.) Thus, frequencies of response patterns ` in a sample, denoted f`, are consistent
and efficient estimators for unconditional moments M`(µβ).

The conditional moments E(Gv | X = `) express our knowledge of the state of the individual (represented
by random vector G) based on the outcomes of the measurements. These values are not directly estimable
from the observations. The goal of GoM analysis is to obtain estimates for these conditional moments.

The most important relation connecting unconditional moments, conditional moments and the basis Λ
(in which conditional moments are calculated) is:

∑

k

λk
jl ·

(
M`(µβ) · E(Gv+1k | X = `)

)
= M`+lj (µβ) · E(Gv | X = ` + lj) (4)

The main system of equations. We have shown in [Kovtun et al., 2004b] that the GoM model defined
above is fully described by a system of equations (with respect to variables αk

jl and hv
` )





∑
k αk

jlh
v+1k

` = hv
`+lj

, J ′ ∈ [0..J − 1], v ∈ V[J ′],
J ⊆ [1..J ] : |J | > J ′, ` ∈ L[J ]

,

j ∈ J , l ∈ [1..Lj ]

h
(0,...,0)
` = M`, ` ∈ L0

∑
v∈V[J′]

(
∑

k vk)!∏
k vk! hv

(0,...,0) = 1, J ′ ∈ [0..J ]

(5)

In this system, the first group of equations corresponds to the main relation between moments (4), and the
last two equations are normalization conditions.

We have proven the following properties of the main system:
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1. Any basis Λ of Q together with conditional moments E(Gv | X = `) calculated in this basis give a
solution of (5) (λk

jl should be substituted for αk
jl, and M`(µβ) · E(Gv | X = `) should be substituted

for hv
` .)

2. Under mild conditions, every solution of (5) gives a basis of Q and conditional moments calculated in
this basis.

As the main system of equations fully describes the model, the important property of the GoM analysis
follows: the mixing distribution is not fully identifiable. Only a finite number of moments may be found
by solving the system, and any mixing distribution that have these moments would satisfy the system. The
fact of nonidentifiability also follows from the general theorem about identifiability of mixtures, because the
family of distributions contained in Q is not linearly independent.

The attractive feature of the GoM analysis is that it can discover a number of useful invariants of the
mixture. The supporting plane of the mixing distribution is defined uniquely, and low-order moments are
identifiable as well. This information is sufficient to make practically substantial conclusions about the
population under consideration.

The main system of equations provides a means for consistent estimation of model parameters. The
solution of this system continuously depends on unconditional moments M`; thus, substitution of frequencies
f` for moments M` gives a system, which solutions converge to the true values of parameters when frequencies
converge to the true moments.

One good property of the main system of equations is that it is linear with respect to variable hv
` . Thus,

if the supporting plane of distribution is known, the conditional moments (3) may be obtained by solving a
linear system of equations. It happens that the supporting plane may be found independently by analysis
of the moment matrix, which we describe in the next subsection.

The moment matrix. Let us write a vector of moments (Mlj )jl together with incomplete vectors of
moments (Ml′

j′+lj
)jl : j 6=j′ , etc., as columns of a matrix, with places for which we do not have moments filled

by question marks. We refer to this incomplete matrix as the moment matrix. The moment matrix contains
a column for every ` ∈ L0. Figure 1 gives an example of a portion of a moment matrix for the case J = 3,
L1 = L2 = L3 = 2. Columns in this matrix correspond to ` = (000), (100), (200), (010), (020), (001), (002),
(110); other columns are not shown.




M(100) ? ? M(110) M(120) M(101) M(102) ? · · ·
M(200) ? ? M(210) M(220) M(201) M(202) ? · · ·
M(010) M(110) M(210) ? ? M(011) M(012) ? · · ·
M(020) M(120) M(220) ? ? M(021) M(022) ? · · ·
M(001) M(101) M(201) M(011) M(021) ? ? M(111) · · ·
M(002) M(102) M(202) M(012) M(022) ? ? M(112) · · ·




Figure 1: Example of moment matrix

Note that certain moments (which are replaced by question marks in the moment matrix) are not observ-
able. The reason for this is that we are not able to perform a measurement on an individual multiple times
independently, and since individuals are heterogeneous (have different probabilities of outcomes of measure-
ments), we do not have multiple realizations of independent identically distributed random variables.

For a moment matrix M let its completion M̄ be a matrix obtained from M by replacing question marks
by arbitrary numbers. We have shown that the moment matrix always has a completion in which all columns
belong to the supporting plane Q. Thus, if the moment matrix has sufficient rank (which is the case in non-
degenerate situations,) a basis of Q may be obtained from this matrix. As we have a consistent estimator of
the moment matrix in form of a frequency matrix, the supporting plane may be consistently estimated.



4 M. Kovtun, I. Akushevich, K. G. Manton, and H. D. Tolley

This property of the moment matrix suggests an efficient algorithm to obtain GoM estimates. First, a
basis of the supporting plane can be obtained from the moment matrix (a way to do this is described in the
next section), and second, conditional moments can be found by solving a linear system of equations.

Algorithm. As it is suggested by a structure of the main system of equations (5) and by properties of
the moment matrix, the algorithm is naturally decomposed into two parts. On the first step, a basis of the
supporting plane should be constructed; the input for this step is the frequency matrix. On the second step,
a system of linear equations should be solved to obtain estimates for conditional expectations.

Step 1: Finding the supporting plane. As for the model distribution all columns of the moment matrix
belong to the supporting plane, and as the frequency matrix is an approximation of the moment matrix, the
natural way to search for the supporting plane is to search for a plane that minimizes the sum of distances
from it to the columns of the frequency matrix. In our case, however, this way is complicated by at least
three obstacles: (a) a sought basis Λ should exactly satisfy conditions

∑
l λ

k
jl = 1 for every k and j; (b) the

statistical inaccuracy of approximation of moments M` by frequencies f` varies considerably over elements
of frequency matrix; (c) the moment matrix (and, correspondingly, the frequency matrix) is incomplete.

The suggested algorithm for estimating the supporting plain consists of the following steps.

(i) The computational rank of the frequency matrix is estimated. For this, we take the biggest minor of
the frequency matrix that does not contain question marks. (For the example given in Figure 1, it is the
left bottom minor of size 3× 3.) Then we calculate the singular value decomposition (SVD) and take
K0 (the first approximation of dimensionality of the GoM problem) equal to the number of singular
values that are greater than standard deviation of the norm of columns involved in the minor. (The
final value for dimensionality of GoM problem will be chosen on the step (v).) As one of requirements
for applicability of GoM model is K ¿ |L|, nothing can be done further if all (or too many) singular
values are greater than the standard deviations.

(ii) We construct a completion of the frequency matrix by means of the following procedure. For every
column c of the frequency matrix and row jl of a question mark in c, we select K0 columns c(1), . . . , c(K0)

satisfying: (a) all columns c(i) contain a value (not a question mark) in row jl; (b) there exist p ≥ K0

rows such that all columns c, c(1), . . . , c(K0) contain values in these rows. Let c[p] be a subcolumn
containing only selected rows. Then we solve a linear system α1c

(1)[p] + · · · + α1c
(K0)[p] = c[p] and

replace a question mark at the position cjl by α1c
(1)
jl + · · · + α1c

(K0)
jl . The system to be solved is

overdetermined; we solve it by minimization of residuals using SVD. When K0 is sufficiently smaller
than |L|, the required selection of the columns is possible for every column c which contains at least K0

values; columns containing less than K0 values are discarded from further consideration. According to
[Kovtun et al., 2004b], the moment matrix always has a completion of rank equal to the dimensionality
of GoM problem; thus, this method should give good results.

(iii) Columns are normalized, so that the condition
∑

l c
′
jl = 1 holds for every j. This is always possible,

as for every column c we have
∑

l cjl = s, where s does not depend on j. Thus, we take c′ = 1
s c.

(iv) Next, we remove the restriction
∑

l cjl = 1 by reducing number of rows by J (1 for every group of
indices j1, . . . , jLj). For this, we use a linear map from R|L| to R|L|−J given by a block-diagonal matrix
A with J blocks

Aj =



−
√

Lj−1

Lj−1 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

−
√

Lj−1

Lj−1 0 0 . . . 1


 (6)

of size Lj×(Lj−1). This map is an isometry of the subspace of R|L| defined by equations
∑

l cjl = 1 to
R|L|−J (every block Aj defines a rotation of a unit simplex in Lj-dimensional space around hypersurface
opposite to the first vertex; the angle of this rotation is such that the first vertex moves to the point
with the first coordinate equals 0).
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(v) Now we have n points y1, . . . , yn (images of columns of frequency matrix) in m = |L| − J-dimensional
space. The problem is to find an affine plane that minimally deviates from these points. First, we find
the center of gravity of this system

y0 =
1
n

∑

i

yi (7)

and then consider a new set of points xi = yi − y0. We need to find a linear subspace in Rn that
minimally deviates from this set of points. The solution of this problem is well-known (see, for example,
chapter 43 of [Kendall and Stuart, 1977]): one has to consider an m × m matrix X = (Xrs)rs with
components Xrs =

∑
i xi

r · xi
s; this matrix is symmetrical and positively defined, and thus it possess

an orthonormal basis of eigenvectors. Let γ1 ≥ γ2 ≥ · · · ≥ γm ≥ 0 be eigenvalues of matrix X, and let
z1, . . . , zm be corresponding them eigenvectors. The plane of dimensionality p that minimizes the sum
of squared distances from point x1, . . . , xn is spanned by z1, . . . , zp, and the sum of squared distances
is trX − ∑p

k=1 γk, This gives us a criterion for the selection of the dimensionality K of the GoM
problem: one has to take K to be the smallest integer such that eigenvalues γK , . . . , γm are smaller
that inaccuracy in input data. Vectors y0, y0 + z1, . . . , y0 + zK−1 give us an affine basis of the sought
affine plane.

(vi) Lastly, we apply inverses of transformation (6) to y0, y0 + z1, . . . , y0 + zK−1 to obtain the sought basis
λ1, . . . , λK of the subspace Q.

The above algorithm solves the problems (a)–(c) listed in the beginning of the subsection, and it possesses
two important properties that are crucial to its usefulness: (a) if the input of the algorithm are true moments
of a distribution generated by K-dimensional GoM model, the output of the algorithm is the true supporting
plane; (b) there exists an open neighbourhood of the true moment matrix in which the output of the algorithm
continuously depend on its input.

The preliminary experiments with the prototype of the algorithm performed by the applicants demon-
strated that it restores the supporting plane with a good degree of precision.

Step 2: Calculation of conditional expectations. When a basis of the supporting plane is found,
the conditional expectations can be found from the main system of equations (5), which is a linear system
after substituting the basis. This is a sparse overdetermined system; methods for solving such systems are
well-elaborated—see, for example, [Forsythe et al., 1977, Kahaner et al., 1988].

More detailed discussion of the algorithms and its properties (including results of simulation and and
application to real-world data) are given in the full version of the paper.
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