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We analyze age pattern of mortality and incidence of major age-associated diseases 
(e.g., cardiovascular diseases, cancer, diabetes etc.) in a population of the U.S. elderly 
with special emphasis on individuals above age 85 when a strong deviation from the 
Gompertz mortality function has been observed. We study the survival and health 
outcomes using nationally representative National Long Term Care Survey (NLTCS) 
longitudinal data collected from 1982 to 1999 because of the high quality of age 
reporting and over samples of persons aged 95+ in 1994 and 1999 (to be done again in 
the 2004 NLTCS). Diagnoses and onsets are identified using ICD-9-CM codes from 
Medicare service use files linked to NLTCS. To model these complex mortality and 
incidence patterns, we develop a new model with three parameters describing shape, 
location of maximum and random effect heterogeneity. This model provides excellent 
fits to the mortality and disease incidence patterns. 
 
 
  
I.INTRODUCTION 
 Analyzing mortality rates at advanced ages in human populations, and inferring 
their relation to the biological processes that determine them is difficult because of 
errors in recording date of death and birth, incompleteness of human population vital 
registry systems, the biological complexity of the human organism and the 
heterogeneity of the distribution of those complex organisms in national populations.  
The importance of solving these problems has been emphasized by the frequent 
observation of human mortality trajectories at advanced ages that strongly deviate from 
commonly used models of adult mortality above, say, age 85 (e.g., the Gompertz (Lew 
and Garfinkel 1984, 1987; SOA 2000; Whittemore 1977)). 
 One strategy to deal with mortality data is to “smooth” data using a standard 
hazard model.  This method is used by SSA actuaries when they fit a Gompertz hazard 
function to Medicare data at late ages (with gender differences in the shape parameter, 
i.e. 5% for males and 6% for females) who then report only “fitted” or “modeled” 
parameters in life tables at ages 95+.  This makes those tables useless for demographic 
analysis of the biological basis of mortality at extreme ages.   
 An alternate strategy is to take what is viewed as the most reliable country data at 
late ages (e.g., Sweden) and then forcing the data from the other countries to fit models 
of that data using by statistical filters e.g., model life tables.  This again makes the data 
artificial and inappropriate for describing the biological basis of late age mortality – all 
we can extract is the biological basis of mortality in Sweden. 
 These procedures only make sense when, because of the poor quality of data at 
advanced ages in many developing countries, there is little reliable information on which 
to base the selection of models more complex than the Gompertz or Weibull hazard.  In 
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the U.S. at least, this limitation no longer applies due to a number of factors.  One is the 
increasing proportion of births officially recorded – a process started at the beginning of 
the 20th century.  Second, is the introduction of the Social Security program in 1933-
1935.  Persons entering the system used three items of self report information recorded 
at a reported age 65+ in 1933.  Since this recording was 70 years ago, adults physically 
appearing to be, and reporting as being, age 65 in 1933, would be age 135 in 2004.  
Thus it seems implausible that a person who modestly misreported his age (say being 
age 55 instead of the reported age 65) would still be alive in 2004.  If a person reporting 
being age 65 in 1933 had actually been age 45 he would now be age 115.  Thus the 
room for error in the initial age reporting in 1933 having an effect at extreme ages in 
2004 is becoming vanishingly small. 
 The National Vital Statistics Act was passed in 1907 though it was not universally 
applied then.  What stimulated the universal coding of birth and death certificates in the 
U.S. was the effect of federal welfare programs developed after the great depression 
(Hetzel 1997).  By the time of Medicare’s introduction in 1965, thirty years had elapsed.  
Persons reporting being age 95 in 1995 would have been 65 in 1965.  Thus, there is 
little chance that a person age 65 in 1965, who was aged 35 in 1933-1935 could have 
truly been less than 65.  Persons aged 105 or less in 2004 are unlikely to have 
significantly inflated ages (i.e. persons aged 34 in 1933 and 65 in 1965).  The accuracy 
of the mortality reporting system was also likely improved by Medicare’s introduction in 
1965 with underlying cause of death computer records available back to 1962 (multiple 
cause coding by computer was tested 1966-1967 and fully implemented in 1968).  In 
addition, the U.S. has implemented a number of data quality studies (e.g., follow – back 
surveys) in a program likely to be more comprehensive than in a smaller country with a 
national registry system, like Sweden.  Since Rosenwaike and Logues’s (1985) book 
showed relatively little bias in age reporting up to age 100, as did Kestenbaum in 1992, 
we should expect, 12 years later, to have reasonably accurate data up to ages 112. 
 An alternate source of U.S. data comes from the private sector where corporate 
profits from life insurance depend on an accurate age reporting.  Indeed any motivation 
for biases in age reporting in the private sector balances out with annuity programs 
being hurt by too high a life expectancy and life insurance hurt by too low a life 
expectancy.  In estimating costs of annuities, annuitant experience for U.S. populations 
is used. Rates from insured lives after age 95 are assumed to reach a high constant 
value of 0.40 for males at age 106+, and for females at age 115+, based on eleven 
actuarial data sets of insured lives (SOA 2000).  This is lower than the mortality rates in 
the SSA life tables at those ages, i.e., the two sets of life table mortality rates, one 
federal and one private, differ in level and shape. As the U.S. population ages, 
especially as the number of extreme elderly (e.g. 95+) grows, differences will grow in 
significance. 
 To age successfully, a person must not only survive but also have a good health. 
The issue of future trends in health and vital statuses in the national population with 
growing proportion of the elderly is a major governmental concern. To better address 
the health demands of the elderly and to reduce economical burden on society it is of 
importance to understand forces governing onsets of diseases and death. Key 
quantities addressing such issues are incidences of age-associated diseases, mortality 
rates and their age patterns. 
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We study human mortality and age-associated disease incidence above age 65, 
to extreme ages, 100+ in the U.S. population. The used dataset is the 1982 to 1999 
National Long Term Care Survey where individuals, especially at late ages, have been 
followed up to 21 years (1982 to 2003) with continuous recording of health service use, 
age of death in Medicare records and detailed reassessment of health status by survey 
every five years.  Persons in NLTCS samples were recruited into the Medicare system 
at age 65 for persons up to age 103 (i.e. in 1965 when Medicare was established).  
Older person’s records were likely transferred from Social Security files with that system 
starting in 1933.  The sample was enhanced in the 1994 NLTCS with 540 persons over 
age 95. The supplement in the 1999 NLTCS was 600 cases (planned in 2004; 1500+ 
cases).  We will use, as a referent, SSA constructed life tables (SSA 2003), life tables 
for the experience of annuitants produced by the Society of Actuaries (SOA 2000), and 
U.S. mortality data from 1982 to 1999 from the Human Mortality Database (Wilmoth, 
2005). 
II.MODEL 
 Perhaps the most frequently used model for studying the age trajectories of adult 
human failure processes is the Gompertz function, (Strehler 1977) or, 

  ( ) t

G t eθµ α= , (1) 

which can be estimated from the time to failure event distribution for a cohort 
population. In (1) α (the scale parameter) is the mortality rate at t = 0 and θ  (the shape 

parameter) is the percentage of per year increase in mortality rates.  Also used is the 
Weibull function: 

  1( ) m

W t tµ β −= . (2) 

Parameters are: β , scale parameter; m, shape parameter which is related to the 

number of mutations in a multi-hit model of carcinogenesis (Armitage and Doll 1961).  
Rosenberg et al (1973) applied (2) to human mortality data and interpreted its 
coefficient m, not as the number of genetic “hits” or genetic errors, as in cancer mortality 
(Armitage and Doll 1954, 1961), but as related to protein thermodynamics, i.e. energy 
necessary to de-nature proteins critical to survival. 
 There have been various attempts to rationalize (1) as a biological theory, e.g. 
Sacher and Trucco (1962) and Strehler and Mildvan (1960). Rosenberg et al. (1973) 
compared the empirical behavior of both the Weibull and Gompertz functions assuming 
mortality was due to the thermodynamics governing protein denaturation induced by 
heat stress.  Heat stress, related to core body temperature and basal metabolism, is 
also related to caloric restriction and endocrine (thyroid) function. Unfortunately, those 
models require the organism to be homogeneous with no internal structure – obviously 
inappropriate for humans. 
 Specifically, the Strehler-Mildvan theory does not describe heterogeneity (e.g., 
individual genetic differences) in risk nor does it show how such physiological 
mechanisms could be modeled.  One approach to describing heterogeneity is to 
assume α  follows a theoretically specified distribution such as the gamma or inverse 
Gaussian distribution (Manton, Stallard and Vaupel 1986). Though empirically better 
behaved at late ages such a function is still limited to extracting information from the 
age at failure event distribution under the assumption of a static heterogeneity 
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distribution.  This can be constructed with models describing processes of health 
change prior to event. Functional forms have to be rationalized from other data. 
 We use a more general model of the effects of population risk heterogeneity 
(Vaupel et al 1979, Manton et al., 1986, Manton, Lowrimore and Yashin 1993), 
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The denominator in (3) shows the age increase in mortality as the most susceptible 
person dies (or become ill) first changing the distribution functions by systematic 
selection of fixed traits. 

The additional parameters areγ , the squared coefficient of variation of the 

distribution of individual frailty with n controling the shape of the distribution e.g. 1n = or 

2n = correspond to the gamma distribution or the inverse Gaussian distribution. 

0 ( )tµ can be modeled as Gompertz ( )G tµ or Weibull ( )W tµ  distributions. Thus, this 

function (3) can be used to model a wide range of frailty distributions. 
 In our analyses, NLTCS data are used to calculate one-year hazard rates, µ . To 

model the hazard rate for k years we integrate (3) over ages t to t+k, 
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Formula (6) links β  with a new parameter t0 – age at which the hazard reaches a 

maximum. It is more convenient to analyze the function (and calculate the age for the 
maximum hazard) in the space defined by t0 rather than β . The maximum does not 

always exist – it may exist only with constraints on other parameters. This follows from 
β  in the RHS of (6) being positive. 

 We analyzed NLTCS data using fixed and variable n. The fit of the model was 
improved as n declines. The best fit was achieved when 0n→ . This limit can be written 

explicitly. For a Weibull hazard, and the event probability, respectively, we have, 
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 A similar approach starts with (3). In this case,  
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where b is related to the Gompertz scale parameter α and can be equated (as for the 

case of Weibull) to the age at which the maximal hazard value 0t  is reached, 
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Does a distribution corresponding to n=0 exist?  It does. The general form of a model 

(3) with  Gompertz 0 ( ) ( )Gt tµ µ=  can be written as ( )Gz tµ µ= , where the mean frailty, 
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has to be satisfied for any cumulative hazard function H. Expanding 
( )( )( )zH z Hdzf z ze e γ− − +−∫ into a series over H and combining coefficients for nH produces a 

recurrence relation for moment calculations: 
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with initial conditions 0 1 1M M= =  ( n

iC  ― binomial coefficients).  The second central 

moment is equal to γ as for the gamma model (for n=1). We can illustrate by expanding,  

 ( 1/ )( )( (1 ) )zH n zHdzf z ze n H eγ− − −− +∫  (14) 

for 0n→ .  0 1 1M M= = and 2 1M γ= + independent of n. This dependence starts from 

moments of third order: 

 2

3 1 3 ( 1)M nγ γ= + + + , (15) 

with the relation to fourth and higher order moments being derivable. 
 
III.RESULTS 
The NLTCS was started in 1982 with roughly 20,000 individuals examined in 1982, 
1984, 1989, 1994, and 1999. Sample size was maintained by sampling roughly 5,000 
persons passing age 65 between survey dates to replace persons lost due to death. In 
1994 540, and in 1999, 600 persons over age 95 were drawn to improve disability and 
mortality estimates at late ages. In all five NLTCS roughly 42,000 individuals were 
examined with roughly 25,000 deaths recorded to 2003, i.e. about 400,000 person 
years of exposure over age 65 and over 100,000 person years of exposure over age 85. 

The NLTCS database includes individuals who entered into NLTCS at different 
times and at different ages; some of them did not fail during the survey; the information 
of several samples is still under investigation, so different censoring schemes have to 
be considered. Therefore, hazard rates can be conveniently calculated using the 
Kaplan-Meier approach and taking into account a right-censoring scheme and left 
truncation. For our problem this means that we have to calculate the individual duration 
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of observation in the NLTCS and Medicare rather than to use life tables. There are two 
advantages of this approach. First, we avoid making assumptions about the size of the 
steps what is necessary in the life tables; and, second, the calculation will be accurate 
to within one day. The latter fact is important because our data allow us to have this 
accuracy. Specifically, date of birth, onset, death, enrollment/disenrollment into the 
NLTCS and Medicare are known with one-day accuracy. If an individual did not fail and 
a censoring scheme is used instead of vital statistics data, the date of the last day under 
observation (e.g., date of last record in NLTCS or Medicare files) is also known with 
one-day accuracy.  

Direct projection of estimates from the NLTCS data to the U.S. population of the 
elderly (65+) is biased by the design effect. To have estimates that are representative of 
the U.S. elderly, sample design effects are taken into account using CDS screener 
weights (Manton and Gu, 2001). The sample weight function for each individual can 
undergo jumps when, for example, a new wave starts. The date when the sample 
weight function jumps, is known with one-day accuracy. Therefore, each individual in 

the NLTCS can be associated with precise time interval under observation 1 1[ ; ]i ft t  with 

corresponding weight function and life history extracted from Medicare files. Hazard 
(e.g., mortality and incidence) rates will be assessed by stratifying the sample relevant 
age categories (one month, year, or several years). Cumulatively, empirical risks will be 

calculated as follows: 1 ii i
h n PYR=∑ ∑ , where in is the number of cases, iPYR is the 

number of person-years. Standard error (SE) will be estimated as SE for binomial 
distribution with adjusting for sample design effect (Manton et al., 1997). 

Important subtask of our analysis will be careful investigation of the censoring 
effects. It is known that risk calculated using Medicare files can be underestimated. This 
can be, for example, because of uncontrolled death or disease onset occurrence 
abroad. As discussed by Kestenbaum (1992) such underestimation can strongly bias 
estimates for oldest-old (85+) and centenarians (100+). Although the Kestenbaum 
results are 12 years old and the data has further improved, we will pay special attention 
to this problem because of focus of this analysis on extreme ages.  

We will consider two alternative censoring schemes. One is when the final day is 
defined from the Medicare vital statistics file (August 6, 2003 at the moment), and the 
other when this day corresponds to the last record either in Medicare claim or in NLTCS 
files.  

 
III.a.Mortality 

The contradictions in the description of national mortality projections provided by 
SoA and SSA, and disagreement with U.S. mortality data, as modeled by NCHS, is a 
sufficient motivation for verification of U.S. mortality trends using alternative data 
(Manton 2004). Such data must be nationally representative and followed for a long 
time. The NLTCS has 5 waves, i.e., 1982, 1984, 1989, 1994 and 1999 (a sixth is in 
process for 2004 with complete mortality for 2004 available in late 2005 or early 2006). 
20,000 individuals are in the sample at each wave. The 2004 NLTCS can be used to 
confirm results of this analysis.  
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Figure 1. Hazard rates calculated for SSA, SoA, U.S. and NLTCS mortality data. 
 
 Figure 1 reproduces mortality results obtained from U.S. mortality data, SSA, and 
SoA as well as calculations of NLTCS hazard rates. We used two different techniques 
for censoring events described above but found no significant differences in the results. 

The hazard rates calculated from SoA reach a plateau for both males and 
females. This is not the case for SSA projections which use a Gompertz function at 
ages 95+. NLTCS life tables also show a plateau. NLTCS data closely coincide with 
SSA projections in the age range 65 to 97. After age 95 the data for the SSA life tables 
are generated by a Gompertz.  Since this essentially differ from the NLTCS predictions, 
we speculate SSA hazards are overestimated. NLTCS mortality rate is systematically 
lower than for the U.S. mortality data starting from age 85. Peak for mortality risk is 
about age 105, what is in agreement with U.S. mortality data. 

Then we model mortality trends in the NLTCS using the models presented 
above. A model capable of describing plateau effects, and even declines of the hazard 
rate at advanced ages, was proposed by Manton et al (1993). This is a gamma model 
with the Weibull or Gompertz describing age dependence of the mortality rate. 
Parameter n in the model corresponds to different distributions of the unobservable 
frailty variable.  For n=1 and 2 we have the gamma and inverse Gaussian distributions, 
respectively. Value n=1/2 was used by Manton et al (1993) to fit mortality data caused 
by lung cancer. Hence, we begin with model (7) and (9) with three values of parameter 
n to fit NLTCS data. These models did not fit the data with the worse fit for n=2. It 
improved for smaller n. Consequently, we made n a free parameter to generalize the set 
of frailty distributions we can represent. Our analysis reveals model fit improved as 
n→0. This limiting case is useful for finding analytical expressions for hazard and 
recurrence formulae for all moments of the corresponding frailty distribution as was 
done in previous section. 

The results of fitting this model with three free parameters (gamma and two 
parameters adjusting age distribution) are in Figures 2. Using the new generalized 
distribution, fits are improved for the Gompertz. Moreover, t0 appears more realistic for 
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the Gompertz. Fitting coefficients in 
the model show several effects.  
First, values of the Gompertz 
shape parameter (i.e. 0.10 to 0.12) 
are larger than for the usual fits of 
the Gompertz up to age 85 – but 
which underestimate mortality at 
early ages. This suggests the rate 
of aging of people dying in this age 
range is higher than for people 

dying later.  γ represents 
heterogeneity (selection, as might 
be expected, reduces this).  The 
issue is whether the greater 
heterogeneity is due to measured 
variables or is theoretically justified.  
This suggests peak mortality risk 
occurs about age 105 for female 
and age 108 for males.   
 
 
 

III.b.Chronic Disease Incidence 
Calculation of an incidence rate requires dates of individual disease onset, which will be 
extracted from 1984-2001 Medicare files linked with NLTCS. An individual will premably 
have an onset of certain disease in his/her observation period if there is at least one 
record with ICD-9-CM code corresponding to the disease on a single institutional claim 
(inpatient, skilled nursing facility, home health care, hospice, and outpatient) or non-
institutional claim (carrier/physician supplier/Part B (1991-2001 only), durable medical 
equipment, clinical labs) on service for which beneficiary received medical care. 
Actually, Medicare data do not contain information whether appearance of ICD-9 code 
is an onset or not. Therefore, to determine a date of onset we will assume, that 
beneficiary with chronic condition certainly receives medical care at least once within 
first 6 months since his/her enrollment into Medicare program. Therefore, if certain 
diagnosis appears in Medicare files within an initial 6-month period, such individual will 
be considered as already been chronically impaired at the time of his enrollment in 
Medicare. Otherwise the date of first appearance of the corresponding diagnosis will be 
considered as the date of onset. 

In this work we focus on the following age-associated diseases: 

• Cancer, which includes all malignant neoplasms (140-208); 

• Diabetes, mellitus which includes both insulin dependent and non-insulin 
dependent forms (250); 

• Cardiovascular diseases (CVD), which include acute rheumatic fever (390-
392), chronic rheumatic heart disease (393-398), hypertensive heart disease 
(402), hypertensive heart and renal disease (404), ischemic heart disease (410-
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Figure 2. Age specific mortality rates for males 
(blue) and females (red) with fitting by generalized 
hazard Gompertz model (9). 
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414), diseases of pulmonary circulation (415-417), and other forms of heart 
diseases (420-429); 

• Cerebro-vascular disease (430-438); 

• Neurodegenerative disorders (NDD), which include psychoses (290-299), 
nonpsychotic mental disorders (300-316), and hereditary and degenerative 
diseases of the central nervous system (330-337). 

For calculation and modeling of incidence rate we use the same approach as for 
analysis of mortality risk. This approach includes Kaplan-Meier estimation for empiric 
incidence rate and the model developed above for fitting.  

Medicare claim data have certain limitations which concern with determination of 
the diagnoses. One of the most serious issues is associated with lack of information on 
diagnoses (ICD codes) from Physician/Supplier/Part B source before 1991. Naïve 
usage of the data in this time domain can result to systematical underestimating the 
number of diagnoses. On the other hand, there are reasons for systematical 
overestimation of the number of diagnoses. In particular, this can occur when diagnoses 
are registered not within the observation period, so first record might be a false date of 
disease onset. Other reasons concern with efficiency of registration related, for 
example, with age dependent refusing to pass annual medical exam by elderly. Such 
sources of uncertainties have to be estimated using additional experimental information. 
Therefore we begin checking the order of such uncertainties.  
 Evident sources for uncertainties related with overestimation and shift of dates of 
onsets are enrollment of new beneficiaries and alteration of coverage by Medicare 
program of certain beneficiaries within the observation period because of legal 
(eligibility) or personal (enrollment under another health insurance) reasons. Actually, 
enrollment of new beneficiaries does not lead to the overestimation in this analysis 
because of a) the 6 month cut used to determine onsets and b) the fact that Medicare 
data cover larger time domain than domain of individuals’ observation for the last two 
waves. Medicare data are available from 1984 for first three waves and from 1991 for 
last two. To project of estimates of incidence rates to the U.S. population we use the 
design weights, which become nonzero only after first survey in which individual 
participates. Thus, participants of fourth wave (1994) contribute to the incidence pattern 
only beginning from 1994 (when their weights become nonzero), but their diagnoses are 
analyzed from 1991, that provides sufficient time period to avoid such bias. Problem 
with 1984 year is also not so important because of relatively small amount of retained 
onsets when we apply the 6 month cut. This was directly tested by estimating of 
differences between incidence distributions calculated from 1984, 1985, and 1986 
years, which appear to be negligible. Another source for uncertainties related with 
partial coverage does not provide essential bias, because of relatively small fraction of 
individuals who are not under part A&B coverage. For example, in March 2001 only 
1.2% of surveyors were not entitled under Medicare, 3.4% were under Part A only, 
0.21% were under Part B only, while 84.75% had Part A and Part B coverage, and 
additionally 9.9% were in the state “pay-in” of Part A and Part B. About 15% of all 
surveyors were under HMO. 

We continue with estimating the effect of lack of medical information in 
Physician/Supplier/Part B source for the period from 1984 to 1990. Missing this 
information might result in loosing diagnoses or their shift to later ages. We tested 
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significance of this effect by comparison of the incidence patterns for the period from 
1992 to 2001 with and without information from this source. Result of such estimation is 
that physician diagnoses account about 30-40% of the total diagnoses. The differences 
between incidence rates calculated for different diseases for the period 1984-1990 
(where Physician/Supplier/Part B information is not available) and 1992-2000 are similar 
and attributed to the same reason. The physician-associated loss of diagnoses is 
practically disease independent. It is slightly larger for NDD, and slightly smaller for 
diabetes. It is also independent of age with exception of very advanced ages (about 
100) when the difference practically vanishes. However, this effect is sex-dependent 
with larger loss of the diagnoses for females practically for all diseases and age regions. 
This conclusion on essential loss of diagnoses due to lack of medical information from 
Physician/Supplier/Part B source is also confirmed by analysis of time distribution of 
new diagnoses, in which an abnormally large peak appears in 1991 for participants of 
the whole NLTCS cohort and of the first three (82, 84 and 89) waves. Consequently, we 
will focus in our analysis on data from 1992 to 2001.  

The results of estimation of age specific disease incidence rates are presented in 
Figure 3. It is seen that incidence rates of CVD and NDD monotonically increase with 
age. This occurs because CVD and NDD groups cover a wide range of specific 
diseases. Consequently, relatively few individuals at advanced ages do not have 
diagnoses corresponding to diseases from these groups that significantly decreases 
total number of person-years. Focusing on specific diseases from these groups we 
observe less pronounced increase or even decline of incidence rates at advanced ages 
that results in a peak in the age pattern. In contrast, the incidence rates associated with 
diabetes remain practically constant with age.  

 

0

0.1

0.2

0.3

0.4

0.5

70 80 90 100 110

2-ndd(290-299,300-316,330-337)

2

4-cancer(140-208)

4

5-diabetes(250)

5

1-cvd(390-398,402,404-429)

1
3-cerebro(430-438)

3

Incidence; Male

Age  

0

0.1

0.2

0.3

0.4

0.5

70 80 90 100 110

2-ndd(290-299,300-316,330-337)

2

4-cancer(140-208)

4

5-diabetes(250)

5

1-cvd(390-398,402,404-429)

1

3-cerebro(430-438)

3

Incidence; Female

Age  
Figure 3. Age specific disease incidence: dots denote Kaplan-Meier estimations 
(means and SE’s) of NLTCS/Medicare data for 1992-2001, lines are the generalized 
Gompertz model (9). 
 To estimate time trend from 1984 to 2001 we evaluated incidence rates for 1984-
1990 and for 1992-2001 (no Physician/Supplier/Part B). Their comparison shows that 
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there is no statistically significant difference between the rates for these two periods 
with important exception of NDD. For NDD incidence in 1992-2001 is found to be as 
twice as larger than that for whole age region and for both sexes.  
 To compare our results with those known in the literature we will focus on each 
group of diseases emphasizing i) shape of the incidence age pattern, (e.g., appearance 
of a peak in the pattern and corresponding age), ii) absolute incidence level, and iii) sex 
differences. 

Search of the literature reveals lack of nationally representative data on 
incidence age patterns on many diseases. The most reliable data on CVD were recently 
published by Arnold et al (2005). They used Cardiovascular Heart Study data to 
estimate incidence rates of major CVD in older Americans. Our estimates will be 
compared with those focusing on myocardial infarction (410) and stroke (436). The most 
detailed data on cancer come from SEER Register for invasive cancers. Although we 
did not distinguish between total malignant cancer incidence and its invasive forms, we 
hypothesize that both forms are adequately addressed by considering onsets for 
inpatients only. Therefore, for the purpose of comparison we have calculated age 
patterns of the incidence rates using all sources for onsets and inpatient only subset. 
The results are presented in Figure 4. As we can see there is an excellent agreement 
for cancer when we take into account only inpatient onsets. The rates with all onsets are 
higher that can be attributed to the contribution of non-invasive cancer forms. 
Reasonably good agreement is also seen for incidence rate of myocardial infarction for 
males considering all sources of onsets. For females the results are in better agreement 
with inpatient rates. Incidence rates for stroke are in pure agreement with those 
provided by Arnold et al (2005). This can be attributed to uncertainties in both studies 
related with inadequate quality of self-report data and mismatch in used ICD codes.  
 Incidence rates of diabetes were in the focus of many studies. However there 
are only few results showing their age distribution for 65 and older. The most 
comprehensive results are provided by McBean et al., (2004) who examined diabetes 
prevalence, incidence, and mortality from 1993 to 2001 among fee-for-service Medicare 
beneficiaries aged 67+ using 5% random sample. Shape and absolute level of 
incidence rates are in agreement with those by McBean et al., (2004) (not shown 
because their results are not sex-specific).   
 Since not for all diseases there is clearly expressed peak the incidence patterns 
associated with certain age, the model fitting these data has to be quite flexible to 
capture both monotonic growth and non-monotonic change. Both these situations are 
captured by our model when we fit these patterns. For those fits which reproduce peaks 

the parameter 0t  describing age at maximum of incidence rates are 95 for cancer for 

females; 101 and 103 for male and female cerebro-vascular disease. Peaks become 
more pronounced if we choose more specific diseases as shown in Figure 4. General 
conclusion from this figure is that peaks appear at significantly younger ages than peaks 
for mortality. One possible reason for such behavior can be attributed to the effect of 
selection (Vaupel et al., 1998), when frail individuals do not survive by these advanced 
ages. Another explanation is under-registration of the diagnoses at advanced ages. 
Other possible biologically and physiologically motivated explanations are discussed by 
Ukraintseva and Yashin (2001). 
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Figure 4. Age pattern of the incidence rates for selected age-associated diseases. 
Black (red) dots correspond to the rate obtained using all sources (inpatient only). Blue 
squares denote SEER based incidence rates (Ries et al., 2004) for invasive cancers 
and the incidence of myocardial infarction and stroke from analysis by Arnold et al. 
(2005). 
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IV. CONCLUSION 

 We present a more general model for heterogeneity hazard rates which 
provides a better fit to mortality above age 95 in the NLTCS data. The data are 
consistent with, not only a plateau effect, but with declines in the per annum hazard rate 
among survivors to ages 100+.  We developed a model which further generalizes a 
concept of frailty and allows us to capture effect of decline of hazard rate with age. 
Mortality data are consistent with SSA projection up to ages 95-100 and then 
demonstrate platue and decline behavior, what is closely to SoA predictions. NLTCS 
mortality rate is systematically lower than for the U.S. mortality data starting from age 
85. Peak for mortality risk found by the generalized Gompertz model is 105 for female 
and 108 for males, what is in agreement with U.S. mortality data. Age pattern of 
incidences of age specific diseases was calculated for CVD, NDD, cancer, diabetes and 
cerebro-vascular diseases. Possible sources for systematical uncertainties were 
analysed and their contribution to age pattern of incidence was estimated. Comparison 
of age pattern with those known in the literature shows good agreement for cancer and 
myocardial infarction. 
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