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Abstract: 

 

Demographers have developed several procedures to identify systematic patterns of misreporting 

of ages, dates, and intervals in survey and census data.  Most of these methods concern digit 

preference, transfers across specified boundaries, omission, and non-response.  Almost all 

methods to identify and describe such patterns use aggregated data, such as the age and sex 

distribution or the distribution of time since last birth.  This paper adapts, integrates, and extends 

these procedures within the framework of statistical methods for individual-level data, primarily 

logit and multinomial logit regression.  This approach leads to the calculation of interpretable 

parameter estimates with standard errors and confidence intervals, corrected for the sample 

design, and the inclusion of covariates that may be related to misreporting.  This research was 

motivated by the author's assessment of age and date reporting in all surveys conducted by the 

Demographic and Health Surveys project, and the paper includes illustrations from that 

assessment. 
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A Statistical Reformulation of Demographic Methods to  

Assess the Quality of Age and Date Reporting, with  

Application to the Demographic and Health Surveys 
 

 

 

1.  Introduction 

 

During the past several decades there has been a general shift of methodological perspective in 

demographic analysis.  This shift has coincided with the increasing availability of individual-

level data, the development of statistical methods to analyze such data, and vastly increased 

computing power.  If one examines the principal references on demographic methods from more 

than thirty years ago, such as Barclay’s Techniques of Population Analysis (1958) or Shryock 

and Siegel’s Methods and Materials of Demography (1971), one finds scarcely any applications 

to survey data, or any differences between how census data and survey data would be analyzed.  

Rates, means, and proportions were calculated without consideration of standard errors or 

confidence intervals.  Irregular distributions or missing information were handled with complex 

interpolation procedures and stable population assumptions.  Two-way or three-way tables were 

used for the calculation of differences between groups rather than multivariate statistical models.  

If one compares articles in Demography of that time with those of today, one finds some 

mathematical modeling, and some chi-square statistics, but relatively little statistical modeling.  

The methods of logit regression, Poisson regression, hazard modeling, and other tools that are 

widely used now were simply not available then. 

 

One category of demographic methods that has not participated in the transition to a statistical 

framework is the analysis of the quality of age and date reporting.  For example, Frank Hobbs’ 

chapter on age and sex composition in Siegel and Swanson’s reissue of Methods and Materials 

of Demography (2004) includes about 20 pages (pp. 136-155) on the analysis of deficiencies in 

age data.  The discussion is complete and up-to-date, but it shows that the techniques to identify 

and adjust for such deficiencies are still expressed in terms of aggregated data—principally age 

ratios, sex ratios, and summary measures such as Myers’ Blended Index. 

 

In the course of preparing an assessment of the quality of age and date reporting in virtually all 

of the Demographic and Health Surveys (DHS) surveys of households and women conducted 

between 1985 and 2003, I have attempted to re-state the traditional approaches in a statistical 

framework.  The goal has been to maintain the reasoning behind these methods but to modify 

and extend them to have the following features: 

 

--to be calculated from files of individual cases 

--to be calculated with a readily available statistical package, such as STATA 

--to be calculated with statistical models such as logit regression  

--to be accompanied with parameter estimates, standard errors, confidence intervals,  

and test statistics 

--to incorporate the sampling design by using sampling weights and clustering 

--to be able to to include categorical or interval-level covariates. 
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This paper will present the strategy for doing this, illustrated with several measures and with 

results from DHS surveys. 

 

 

2.  General strategy 

 

The reports of age and date in DHS surveys that are of primary interest include the following: 

 

--ages of all household members, reported in the household survey 

--ages and birth dates of women, reported in the survey of women 15-49 

--ages at marriage and dates of marriage of these women 

--dates of birth of children 

--ages at death of children who have died, especially before age two. 

 

DHS surveys include other dates and ages, but the ones listed above would generally be 

considered most important, and the others would be analyzed similarly. 

 

Three principal kinds of problems can arise with these reports.  First, in the surveys of women, 

although not in the household surveys, there can be incompleteness in the reporting of an age or 

birth date.  For example, a woman may report her current age but not her birth year or birth 

month.  In  this case, or if the responses that are given are internally inconsistent, DHS uses 

automated imputation procedures so that age, birth year, and birth month are all present and 

consistent.  

 

The second type of problem is heaping.  This usually takes the form of excessive numbers of 

cases reported at ages ending in 0 or 5, but the heaping can occur at other digits, especially for 

persons under age 20, and sometimes takes the form of heaping on calendar years that end in 0 or 

5.  Age at the death of a child is given in months if the child died before the second birthday, 

with substantial heaping at 12 months and often some heaping at 6 and 18 months.  This pattern 

is also characteristic of duration of breastfeeding and any other durations given in months, but 

our examples will only relate to child deaths. 

 

Thirdly, there can be net transfers or displacements of age.  (Heaping, by contrast, is the result of 

age transfers, but with approximately equal numbers of upward and downward transfers.)  

Eligible respondents for the surveys of women are identified by their age in the household roster.  

Interviewers have some motivation to shift the ages of women who are just inside the boundaries 

of the 15-49 interval in order to reduce their workload of later interviews of women.   

 

Note that the omission of eligible cases is not included in this list of potential problems.  

Omission could be extremely serious, for example if there was systematic omission of births, 

especially of ones that had resulted in an early child death.  There is very little evidence of such 

omission in DHS surveys, at least, so it will not be conisdered to be an issue.  In some other 

applications, such as an evaluation of vital statistics reporting in a developing country, it 

certainly could not be ignored. 
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Incompleteness of age and date reporting is somewhat different from heaping and displacement 

because it is readily identified for individual cases and described by a distribution of the different 

kinds of information that are given (e.g. age, year of birth, and month of birth) and the degree of 

compatibility of these components.  Imputation procedures to force compatibility or to estimate 

missing components, with a random component, have been developed by DHS and will not be 

described or assessed here. 

 

Heaping and displacement have the fundamental difference that it is not possible to say whether 

a specific case has been misreported.  For example, some cases with reported age 50 may have 

been affected by systematic heaping or displacement, but it is impossible to distinguish them 

with certainty from cases for which the true age is, indeed, 50.   

 

Existing methods to detect heaping and displacement typically proceed through two steps: the 

calculation of expected values, followed by a summary of deviations from these expected values. 

 

The first step involves the calculation of expected frequencies, proportions, or ratios.  For 

example, Myers’ Blended Index assumes that, after adjustment, each final digit 0 through 9 will 

be equally likely.  The expected frequency of each digit is n/10, where n is the sample size.  As 

another example, heaping at 12 months may be identified by the calculation of an expected 

frequency at 12 months.  Sullivan, Bicego, and Rutstein (in Arnold, et al., 1990) and Marckwardt 

and Rutstein (1996) calculated the expected value at 12 months as the average for months 10, 11, 

13, and 14.  Singh (in Goldman, Rutstein, and Singh, 1985) and Curtis (1995) calculate the 

expected value at 12 months as the average for months 10, 11, 12, 13, and 14. 

  

In an essentially similar way, sex ratios and age ratios to detect displacement involve the 

calculation of expected values.  From the household schedule, the ratio of males to females can 

be calculated at age 10-14 and at age 15-19.  If there are no downward transfers of women across 

age 15, one can think of either of these sex ratios as the (estimated) expected value of the other.  

If there are net downward transfers, they will tend to make the sex ratio at 15-19 larger than the 

sex ratio at 10-14.  Similarly, looking just at the age distribution of females, age ratios can detect 

displacement.  If there are no downward transfers of women across age 15, then the ratio of 

females age 10-14 to females age 5-9 should be about the same as the ratio of females age 15-19 

to females age 10-14; either can be taken as the expected value of the other.  But if females have 

been systematically shifted downwards across age 15, then the first ratio should be be noticeably 

larger than the second one.   

 

The second step in these methods is the calculation of a summary index based on differences that 

should be close to zero or ratios that should be close to one if there is no misreporting. Thus, 

Myers’ Blended Index is just the index of dissimilarity for a comparison of the observed (but 

blended) proportions at each final digit with the expected proportions, uniformly .10: it is one-

half the sum of the absolute deviations.  Rutstein and Bicego (1990) use an overall measure of 

age displacement which is the sum of the difference between the two sex ratios at age 15 and the 

two sex ratios at age 45, and a similar measure using the two age ratios at age 15 and the two age 

ratios at age 45.  The ratio of observed to expected numbers of deaths at 12 months has been 

used in DHS assessments. 
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All of the procedures described above are amenable to a translation into standard statistical 

methods, although, to our knowledge, this has not yet been done.  Incompleteness is easiest to 

translate, because it is readily expressed as a binary outcome, for which logit regression is 

available.  Heaping and displacement can also be analyzed with logit and multinomial logit 

regression, although the definitions of the outcome variables may be less obvious.  In a sense, 

many statistical methods are intended for the calculation of individual-level expected values and 

deviations of observed values from expected values, and it is perhaps surprising that they have 

not been used more to assess the quality of age and date reporting. 

 

 

3.  Data 

 

As mentioned in the introduction, the impetus for this paper was an opportunity to conduct an 

assessment of the quallity of age and date reporting in DHS surveys of households and women.  

The report on that assessment (Pullum, 2005) includes 125 out of the 141 surveys conducted 

from 1985 to 2003.  Sixteen surveys were omitted because they were restricted or because the 

standard recode files were not yet available.  DHS-I household surveys (1985-89) were never put 

into standard recode format and are omitted. 

 

This analysis is thus based on 99 household surveys conducted between 1990 and 2003 and 125 

surveys of women age 15-49 conducted between 1985 and 2003.  For each survey of women, a 

file of all their children was constructed.  Sixty-one countries are represented, with one to five 

surveys from each country.  Table 1 gives a brief description of the data files in terms of the 

numbers of cases.  All three kinds of files will appear in our examples.  Any results reported 

from the DHS household surveys will be limited to de jure residents (hv103=1).  File preparation 

and data analysis were done with Stata, version 8. 

 

 
Table 1.  Number of data files used and number of cases in those files. 

        

  
Number of 
files Smallest Median Mean Largest 

Household files 99  5,764 36,885 69,143 488,839 

Woman files 125  1,286 7,070 9,904 90,303 

Child files  125  3,256 24,357 30,865 285,599 

        

Notes:        

The household files consist of one record for each person in each household  

The smallest files are all from the Dominican Republic 1999 survey  

The largest household and woman files are from the India 1998/99 survey  
The largest child file is from the India 1992/93 
survey    
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4.  Statistical analysis of incompleteness of ages and dates 

 

The survey of women age 15-49 includes the following ages and dates for which the analysis 

requires the construction of a century-month code (cmc), which in turn requires both a calendar 

year and a month:  

 

--ages and birth dates of women 

--ages at marriage and dates of marriage of these women 

--dates of birth of children. 

 

For each of these events, DHS provides a variable that tells whether there was any inconsistency 

or incompleteness in the original data, in which case a reconciliation or imputation procedure 

was used to generate the age, year, month, and cmc that appears in the standard recode file.  Here 

we shall refer to any kind of modification of the original responses as imputation.  We will not 

describe the imputation procedure except to say that it is very sophisticated and includes a 

random component to avoid any additional heaping on age, year, or month.  To assess the quality 

of the data, the most important distinction is whether or not any imputation was required.   

 

The standard way to describe the level of incompleteness would be with a proportion or a 

percentage, perhaps calculated within subgroups, but the natural statistical model for a binary 

outcome such as this is logit regression.  A variable y, “incompleteness”, will be assigned the 

value 0 if reporting of age and birthdate was complete (v014=1) and 1 otherwise. We could 

obtain the proportion of incomplete responses simply with a logit regression of y with no 

covariates, getting a coefficient b0 on the logit scale.  That is, we calculate 0)ˆ(log byit =  . 

( )ˆ(log yit  is a shorthand notation for )]0r(P̂/)1r(P̂log[ == yy .)  The exponential of b0 will be 

the observed odds of an incomplete response, and the observed proportion will be given by 

)]exp(1/[)exp( 00 bbp += .  A confidence interval for the population proportion is obtained by 

applying the same transformation to the two ends of the confidence interval for the population 

value of b0.   Then y can be regressed on covariates for a much more complete description of the 

pattern of incompleteness than would otherwise be possible.   

 

This application of logit regression will be illustrated with one of the DHS surveys.  The survey 

with the highest level of imputation of the woman’s age and birth date (indicated by v014) was 

the 2000 survey of Bangladesh.  In that survey, this information was complete for only 6.1% of 

the women.  81.9% of the women gave their current age, without a birth year or birth month, and 

another 9.6% gave their current age and a birth year, but no birth month.  The remainder gave 

age and either month or year, but they were inconsistent.  Unless all of the original information is 

wrong, the error induced by imputation itself will rarely exceed a year in these kinds of cases.  

Nevertheless, the high level of incompleteness of age and birth data in this survey is noteworthy 

because it probably reflects the quality of the information that is provided. 

 

In a logit regression of y with no covariates we obtain 6084.20 =b , and the lower and upper ends 

of its 95% confidence interval are 2.4603 and 2.7564, respectively.  These numbers convert to an 

observed proportion 931.=p , with a 95% confidence interval of (.921, .940). 
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The 2000 survey of Bangladesh included 10,544 women.  The file includes 171 women age 10-

14, which is very unusual for a DHS survey but was part of a strategy to combat downward 

transfers from 15-19 to 10-14, a topic to be discussed below.  Likely predictors of misreporting 

of all kinds in this survey are type of place of residence (urban/rural, with rural as the reference 

category), district (with Dhaka District as reference category), age (categorized, with 15-19 as 

reference category) and education (years of schooling, v133, 26 missing).  Education of women 

in Bangladesh has a skewed distribution; 45% of the respondents had no schooling at all.   

 

Table 2 describes a sequence of three logit regressions.  Model 1 contains only type of place and 

district, model 2 adds age of respondent, and model 3 adds education of respondent.  All four 

variables are highly significant in every model in which they appear.  Incompleteness is most 

severe for women in rural parts of Dhaka District, age 35 and above, with no education. 

Education is clearly the most important predictor.  It is very important in its own right and it 

explains most of the urban/rural differential.  Model 3 accounts for 29% of the total deviance.  
 
 
Table 2.  Logit regressions of incompleteness of age and birthdate 
Reporting on type of place of residence, district, age, and education. 
DHS survey of Bangladesh 2000.  OR: Odds Ratio; z: test statistic 
___________________________________________________________ 
Incomplete   |   Model 1         Model 2        Model 3      
Age/Birthdate|   OR     z        OR     z       OR      z 
___________________________________________________________ 
Type of Place 
       urban |  .29   -9.26     .28   -9.22     .68   -3.31  
       rural | 1.00    ----    1.00    ----    1.00    ----      
             | 
District     | 
     Barisal |  .48   -2.96     .47   -2.97     .51   -2.87  
  Chittagong |  .79   -1.10     .79   -1.07     .97   -0.18  
       Dhaka | 1.00    ----    1.00    ----    1.00    ---- 
      Khulna |  .37   -4.94     .38   -4.83     .32   -5.62  
   Rajashahi |  .68   -2.02     .68   -2.01     .56   -2.98  
      Sylhet |  .64   -1.59     .61   -1.73     .50   -3.02 
             | 
Age          | 
       10-14 |                  .77   -0.86     .57   -1.80  
       15-19 |                 1.00    ----    1.00    ---- 
       20-24 |                  .82   -1.49     .87   -0.99  
       25-29 |                  .83   -1.35     .74   -2.04  
       30-34 |                 1.25    1.36    1.21    1.16  
       35-39 |                 2.21    4.61    1.62    2.61  
       40-44 |                 1.71    2.91    1.06    0.29  
       45-49 |                 1.94    3.25    1.12    0.54  

 
Years of 
Education    |                                  .69  -16.52  
___________________________________________________________ 
 
Pseudo R2    |         .0516           .0665           .2904 
___________________________________________________________ 
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Another logit regression using the Bangladesh 2000 survey looked for variation across 

interviewers (v028).  This survey had 85 interviewers, but 20 of them did 10 or fewer interviews.  

By dropping those 20 interviewers, we drop only 45 cases.  The remaining 65 interviewers did an 

average of 161.5 interviews each.  Most interviewers worked in both urban and rural areas and in 

more than one district, reducing the typical confounding between effects of interviewers and 

effects of type of place and district.  In a fixed effects model (treating v028 as a categorical 

variable with 65 categories) there are relatively few significant differences between interviewers.  

4.54% of the total deviance is explained.  This is highly significant, but less than the 5.16% 

explained by type of place and district in model 1.  Interestingly, there is a highly significant 

difference between the 65 main interviewers and the 20 who collectively did only 45 interviews.  

The mean level of incompleteness for the group of 20 interviewers was 73%, compared with 

92% for the group of 65.  We speculate that the 20 were supervisors.  This difference suggests 

that incompleteness can be reduced, probably with additional probing.  Of course, there is no 

guarantee that a more complete report is more accurate in such a context, because most people 

simply do not know their birthdates.  

 

 

 

5.  Statistical analysis of age and date heaping 

 

5.1 Heaping on a single value  

 

Sometimes there is evidence that a specific number in a relatively short sequence appears more 

often than it should.  For example, one way to assess upward transfers out of the 15-49 age range 

of eligibility for the survey of women would be to focus on the frequency of age 50 within a 

range of ages close to 50.  To assess backward transfers in the birth history one could compare 

the reported number of births in the calendar year immediately before the window of health 

questions with the surrounding calendar years.  Another example, and the one we shall focus on, 

is heaping of children’s deaths at 12 months.  The first two examples relate to transfers, with 

heaping interpreted as a symptom of transfers. 

 

In the first major assessment of DHS data (Demographic and Health Surveys, 1990) and in 

Marckwardt and Rutstein (1996), three-point or five-point ratios (our labels, not theirs) were 

used to assess these three specific kinds of heaping.  These ratios are defined as follows: 

 

Three-point ratio: Let a, b, and c be the number of events in three consecutive intervals (e.g. 

ages 49, 50, 51).  The “correct” value of b is estimated to be 2/)( ca + ; the ratio of observed to 

“correct” is 
ca

b

ca

b
r

+
=

+
=

2

2/)(
. 

Five-point ratio: Let a, b, c, d, e be the number of events in five consecutive intervals (e.g. ages 

48, 49, 50, 51, 52).  The “correct” value of c is estimated to be 4/)( edba +++ ; the ratio of 

observed to “correct” is
edba

c

edba

c
r

+++
=

+++
=

4

4/)(
.   
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For both the three-point and five-point ratio, the relative excess in the middle frequency is 

described with 1−r  or )1(100 −r .  If this is close to 0 then the progression across the three or 

five intervals is close to linear.  If there actually is heaping, then the average of the surrounding 

frequencies is not a good estimate of the correct middle frequency, but a comparison of the 

observed middle frequency to that average will be a good indicator of heaping, with the 

advantage that the observed and correct frequencies will be statistically independent. 

 

It appears that this method has always been used with aggregated data, e.g. a tabulated 

distribution of single year of age or calendar year of birth or age at death in months, but it can 

readily be put into a logit regression format.  This will be illustrated with the five-point ratio and 

age at death 12 months.  Define an individual-level outcome y, age at death in months, and 

assign the value 1 if the reported age is 12 months, the value 0 if it is 10, 11, 13, or 14 months, 

and missing otherwise.  We could obtain the ratio r simply with a logit regression of y with no 

covariates, getting a coefficient b0 on the logit scale.  The exponential of b0 , when multiplied by 

four, will be the ratio r, that is, )exp(4 0br = .  This procedure will give a test statistic for the null 

hypothesis that the ratio is one (i.e. that b0=0) in the population.  A confidence interval for the 

population value of r is obtained by exponentiating the confidence interval for the population 

value of b0 and multiplying by four.  As in section 4, logit regression will also allow for sampling 

weights and clustering and will allow the inclusion of covariates. 

 

The application to DHS data will be based on deaths to children born in the ten years before the 

survey.  Going back further than this simply exacerbates the heaping at 12 months.  The four 

DHS surveys with the most severe heaping of age at death at 12 months are the 1988 survey of 

Ghana, the 1987 survey of Mali, the 1987 survey of Burundi, and the 1999 survey of Guinea.  In 

general, as suggested by the dates of these surveys, there has been a substantial reduction over 

time in this kind of heaping.  This example will use Guinea 1999.  

 

Using the child file for the Guinea 1999 survey, a logit regression of y with no covariates has an 

intercept 1.6244 and 95% confidence interval (1.2818, 1.9669) for the population value of the 

intercept.  Exponentiating each of these numbers and then multiplying by 4, the observed five-

point ratio is 20.301 and a 95% confidence interval for the population value of the five-point 

ratio is (14.413, 28.595)  This is a wide interval because the frequencies are rather small.  The 

survey has 17 (unweighted) deaths at 10 months, 10 at 11 months, 245 at 12 months, 9 at 13 

months, and 12 at 14 months.  Despite the large standard error, the five-point ratio is very 

significantly greater than 1. 

 

Additional logit regressions do not show significant covariation by type of place of residence 

(urban, rural), sub-national region (Lower Guinea, Central Guinea, Upper Guinea, Forest 

Guinea, Conakry) or age of mother.  However, education of the mother has a significant negative 

effect on the ratio.  Of these 293 child deaths, 264 were to women with no schooling at all, and 

the remaining 29 were to women whose education varied from one year to eleven years.  The 

coefficient for education is -.0427.  If this is exponentiated (it is not necessary then to multiply 

by 4), we get an estimated reduction of 4.2% in the five-point ratio per year of education.  The 

robust standard error of this coefficient is .0168, and a one-tailed z test statistic is significant at 

the .01 level.  (The test is one-tailed because we would hypothesize that education has a negative 

effect on heaping.) 
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Some final cautions must be made.  First, it is well known that child mortality tends to cluster by 

households and women.  These 293 child deaths in this data set did not all occur to different 

women: 19 of the mothers had two child deaths.  A correction for this would increase the 

standard errors of both the intercept and the slope of the logit regression.  Second, the extreme 

skew in the distribution of the mother’s education may undermine the validity of a test of the 

education effect.  However, because of the small sample size we will not push this example any 

further. 

 

Severe heaping of age at death 12 months may lead to an under-estimate of infant mortality (at 

age 0) and an over-estimate of child mortality (at age 1-4) because some of those mis-reported 

deaths actually occurred in months 0-11.  DHS sometimes re-distributes one-fourth of the excess 

at 12 months back into the interval 0-11 months.  I have also attempted to develop procedures to 

re-distribute heaped births but will not go into them here. 

 

 

5.2  Digit heaping 

 

In many settings there is a pronounced tendency to give ages, particularly of adults, that end in 

the final digits 0 or 5.  This is a natural result of having a number system with base ten and not 

being confident of one’s true age.  Heaping on multiples of 6 and 12 when reporting durations in 

months, or heaping on multiples of 7 when reporting durations in days, etc., is common when 

providing an estimate.   

 

In order to identify the amount of age heaping, the first step would be to look at the relative 

frequency of each final digit, 0, 1, 2, …, 9.  However, most age distributions have fewer and 

fewer cases as age increases (particularly in terms of true age), because of the combined effects 

of mortality and a history of population growth.  As a result, there will tend to be more cases 

with final digit 0 than final digit 1; more cases with final digit 1 than final digit 2, and so on.  

One could imagine many ways to adjust for this pattern, and several have indeed been proposed, 

but the most common measure of age heaping used by demographers is Myers’ Blended Index.  

It requires that the full range of ages be a multiple of ten, such as ages 10 to 89 (which includes 

89-10+1=80=8*10 years), and gives weights to each age in the following pattern.  Say that the 

starting age is 10 and the final age is 89.  Then (see, for example, Siegel and Swanson, 2004, pp. 

138-9) the weight for age 10 will be 1; for age 11 will be 2; …; for age 18 will be 9; and ages 19 

through 89 will have weight 10.  The age range for Myers Index does not have to begin with 10; 

the main reason why it usually does is that less heaping is usually observed in the early ages. 

 

We will not go into the reasoning behind these weights, but they in practice they seem to work 

well.  One uses them to calculate the weighted sum of cases with reported final digit 0, the 

weighted sum for final digit 1, etc., and converts these ten sums into percentages of the weighted 

grand total.  If there were no heaping, each percentage would be 10.  The final index is 

calculated as half the sum of absolute deviations from 10.  This is a form of an index of 

dissimilarity and can be interpreted as the percentage of cases that would have to be transferred 

from one final digit to another in order to achieve a uniform (adjusted) distribution across digits.  
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The measure would detect any kind of widespread digit preference, e.g. for even numbers, not 

just a preference for 0 and 5. 

 

Although Myers’ Index is traditionally calculated from aggregated data, that is, from an age 

distribution in single years of age, using a spreadsheet, it can also be calculated from individual-

level data using multinomial logit regression.  Within a range such as 10-89, a respondent’s age 

is converted to a tens digit and a ones digit, which may be called digit10 and digit1, respectively.  

The outcome variable y is digit1, which has ten “categories”, labeled 0 through 9.  The weights, 

described above, are a variable wt.  A multinomial logit regression with dependent variable y, no 

covariates, and frequency weights wt is calculated.  (In Stata, the command is simply “mlogit y 

[fweight=wt]”.  )  Then (using the “predict” command in Stata) one constructs ten variables 

which are the estimated probabilities that y=0, y=1, …, y=9 for each case in the file.  The 

estimated probabilities will be the same for every case and may be referred to as 910
ˆ,...,ˆ,ˆ ppp .  

One then combines these ten variables into the variable ∑
=

−=
9

0

|1.ˆ|50
i

ipM  to get Myers’ Index.  

(The factor of 50 comes from the conversion to percentages and then division by 2.)  M will be 

attached to every case in the file but will have the same value for every case.  Myers Index itself 

could be retrieved by listing the value of M for the first case in the file, say, or calculating the 

mean of M.   

 

Unfortunately, standard errors and test statistics will be distorted by the weights 1 through 10 

used in the blending process, because they artificially inflate the size of the sample.  This 

distortion will be greatly reduced by treating the Myers weights like sampling weights (pweights 

rather than fweights).  In Stata, the pweight option always normalizes the weights to have an 

average of one.  Since the Myers weights are ten for most cases, pweight will approximately 

have the effect of dividing the Myers weights by 10, resulting in a weight near one for most 

cases.  The cases in the first nine years of the full range, especially the first four or five years, 

will be largely discounted in the calculation of standard errors, but they usually show the least 

evidence of heaping.  If the survey includes sampling weights, as most DHS surveys do, then the 

Myers frequency weights would be multiplied by the sampling weights, and the product would 

be treated as pweights for the calculation of robust standard errors.   

 

Putting aside the effect of the Myers weights, a test of the null hypothesis that M=0 in the 

population would be equivalent to a simultaneous test of the null hypothesis that all the constants 

or intercepts in the multinomial logit regression are zero.  Calculation of the standard error of M 

in order to construct a confidence interval for the population value or to test other hypotheses 

would require some other procedure, such as a bootstrap.   

 

The real payoff from the multinomial logit framework is that it allows the incorporation of 

interval-level or categorical covariates.  For example, w could be a covariate such as years of 

education of the household respondent.  The procedure is essentially the same as above, with the 

following changes.  First, w would be included in the multinomial logit regression.  Second, the 

variable M would become M(w), a function of w.  This function is not necessarily linear and may 

not even have a continuous first derivative because of the role of the absolute values.  However, 

the function is easily graphed, and the effect of w on heaping can be assessed, at least in terms of 



 12 

magnitude and statistical significance (with the caveats above), from the change in the log 

likelihood of the of the multinomial logit regression when w is added. 

 

To illustrate individual-level and multivariate version of Myers’ Index we will use the 1998/99 

survey of India.  The 1990 survey of Nigeria and the 1991 survey of Pakistan have slightly 

higher levels of heaping than this survey, but they are used in other examples in this paper.  

Evidence of age heaping is equally strong in the 1993 survey of India.  India 1998/99 is the 

largest survey DHS has ever carried out.  There were a total of 488,839 de jure residents age 0-

79 in the household survey, the basis for these calculations.  Males and females are combined.  

Table 3 gives the distribution across the final digit y in three forms: unweighted; weighted by the 

sampling weights in the survey; and weighted by the product of the Myers weights and the 

sampling weights.  The third column can be used directly for the calculation of Myers’ Index by 

summing the absolute deviations from 10% and dividing by two.  This calculation gives M=17.1.  

There is very pronounced heaping at final digits 0 and 5, a small amount of heaping at 2 and 8, 

and avoidance of the other six digits.  In order to achieve a uniform (adjusted) distribution, 

17.1% of respondents would have to be shifted from digits 0, 2, 5, or 8 to the other six digits. 

 

 
Table 3.  Percentage distribution of household residents across final digit 
of age 0-9.  DHS survey of India, 1998/99. 
 
Column (1):  Unweighted 
Column (2):  Weighted by sampling weights 
Column (3):  Weighted by product of Myers weights and sampling weights 
 
          y |      (1)       (2)       (3)  
________________________________________________ 
          0 |     18.28     18.28     18.10          
          1 |      7.04      7.16      6.06          
          2 |     11.11     11.17     10.73          
          3 |      7.58      7.51      6.91          
          4 |      8.03      8.01      7.57          
          5 |     16.37     16.43     17.17          
          6 |      8.59      8.63      8.78          
          7 |      6.95      6.90      7.18          
          8 |     10.27     10.21     11.12          
          9 |      5.79      5.71      6.39          
________________________________________________ 
      Total |    100.00    100.00    100.00 

 

 

The multivariate form of the model will be illustrated with two covariates.  We first define w to 

be the tens digit of the reported age, which takes the values 0, 1, …, 7.  This covariate provides a 

way to quantify the commonly observed increase in heaping as age increases.  Figure 1 shows 

this pattern very clearly.  (M(w) is only defined for integer values of w and the graph connects 

the fitted values.)  Heaping is not negligible in the first two decades of age but is relatively low 

(the single year of age distribution shows heaping at ages 5, 8, 10, 12, and 18).   M increases by 

an average of about 8% in every subsequent decade of age.  Figure 1 (and Figure2) also shows 

the overall value of Myers’ Index with a horizontal line at 17.1%. 
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Secondly, we define w to be the completed years of schooling of the household respondent, the 

person who provides the information about the household, including the ages of household 

members.  This person is usually the household head or the spouse of the head.  45% of the 

household respondents have no formal schooling at all, and only 10% have 12 or more years of 

schooling.   
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Figure 1.  Myers' Index by tens digit, India 1998/99.
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Figure 2.  Myers' Index by schooling of household respondent, India 1998/99.
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This variable has a highly significant negative effect on heaping.  The Wald chi-square is 1439 

with 9 degrees of freedom.  The fitted value of M(w) is about half as large at the maximum value 

of respondent’s schooling as at the minimum value.  However, the proportion of total deviance 

explained is miniscule; the pseudo-R
2
 is only .001.   

 

Finally, this multivariate version of Myers’ Index could lead to an alternative form of the initial 

adjustment with the weights 1 through 10 in the first decade.  Instead of using weights, the 

overall shape of the age distribution could be taken into account with a statistical control rather 

than weights.  We have explored several ways to do this but will not describe them here. 

 

 

 

6.  Statistical analysis of age displacement using age ratios 

 

Two kinds of systematic age displacement are likely in DHS surveys.  The first is a tendency for 

ages in the household survey to be displaced across the boundaries of eligibility for surveys of 

individuals.  Related to the survey of women, there may be some displacement of women 

downward across age 15 or upward across age 50.  If there is a survey of men with fixed age 

boundaries, there may some displacement of men downward across the lower boundary or 

upward across the upper boundary.  This is commonly believed to be the result of interviewers 

seeking to reduce their workload, but it is probably more likely if the household respondent is 

not fully confident about the ages of household members.  We will assume that such transfers are 

within five years of the boundary, in terms of both the true age and the reported age. 

 

The second type of transfer, also motivated by the interviewers’ possible desire to reduce their 

workload, is the misreporting of the ages or birthdates of children in order to avoid the detailed 

questions about child health.  These questions are to be asked about children born since January 

of some calendar year—that is, eligibility is based on date of birth, not age at interview.  In all 

surveys in DHS-I, for example, the questions were asked about all children born since January of 

the fifth calendar year before the year in which the fieldwork began.  For example, if fieldwork 

began in October 1988, eligibility would begin in January 1983.  In such a survey, some 

birthdates might be shifted backwards.  We will assume that such transfers are within one year of 

the boundary, in terms of both the true birthdate and the reported birthdate.  Thus, in this 

example, some births that occurred in 1983 might be transferred to 1982.  In addition to 

distorting measures of child health, such transfers have the potential to distort fertility rates, 

leading to exaggerated evidence of fertility decline. 

 

In some countries, such as Pakistan (Pullum, 1990), there is a well-documented pattern of 

shifting children’s ages upwards in any type of data collection.  The methods described here are 

unable to detect such a pattern or to detect transvers that occur in a wider range than +5 years for 

adults and +1 year for children.    
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6.1  Sex ratios 

 

Original formulation 

 

One approach to the identification of transfers of women across age 15, for example, would be 

based on a comparison between the sex ratios (the number of males divided by the number of 

females, sometimes multiplied by 100) for ages 10-14 and 15-19.  If there is no net displacement, 

we would expect these two sex ratios to be approximately equal. 

 

Looking at the Botswana 1988 survey, Rutstein and Bicego (1990) calculated the following sex 

ratios: 

 

  Age  Sex 

  Interval Ratio   

  10-14      85 

  15-19    102 

  ....... 

  45-49    107 

  50-54      46 

 

These numbers suggest a net deficit of women age 15-19 and age 45-49, and an excess of women 

age 10-14 and age 50-54, consistent with a hypothesis of transfers out of the 15-49 interval of 

eligibility.  Rutstein and Bicego summarize this indication of displacement with SRo-SRi, the sex 

ratio outside (o) the boundary minus the sex ratio inside (i) the boundary.  For Botswana 1988, 

this indicator is 85-102 = -17 for the lower age boundary and 46-107 = -61 for the upper age 

boundary, or a total of (-17) + (-61) = -78.  The more negative this total, the greater the 

indication of transfers in the hypothesized direction. 

 

 

Revised aggregate-level approach 

 

This approach can be re-stated as a statistical model.  Focusing on the lower boundary for 

eligibility, age 15, we identify one age interval above the boundary and one below it, for both 

males and females: 

 

                                                 Males                        Females    

  Age  Observed         Observed Fitted    

  Interval Frequency       Frequency Frequency   

  10-14           a                  b        b̂    

  15-19           d                  c        ĉ    

 

Thus, for Botswana 1988, a/b=.85 and d/c=1.02. 

 

An assumption that the sex ratios should be the same for these adjacent age intervals is 

equivalent to an assumption that the age ratio for females should be the same as the age ratio for 

males.  That is, if a/b=d/c, then c/b=d/a, or vice versa.  We can then obtain estimates of b and c, 



 16 

i.e. b̂  and ĉ , by assuming that b̂  + ĉ  = b + c  and that adbc /ˆ/ˆ =  (or, equivalently, that  

)/ln()ˆ/ˆln( adbc = ).   

 

We now define two somewhat artificial binary variables, y and x.  The outcome variable y is 

coded 1 for the five-year age group just above the boundary age (e.g. 15 or 50) and 0 for the five-

year age group just below; otherwise it is missing.  The variable x is coded 1 for females and 0 

for males.  The cross-tabulation of y and x is shown in table 3. 

 

 

Table 3.  Layout of two age groups, and sex, into a 2x2 table for logit regression approach to age 

tansfers based on sex ratios.  y is 1 for the five-year age group above the boundary and 0 for the 

five-year age group below the boundary;   x is 1 for females and 0 for males.   a, b, c, and d are 

the numbers of cases in the four combinations. 

                              x 

                               0             1 

                           Male      Female 

 -----------------------                                                

0   (first age group)       |    a     | b    | 

       y                                                ---------------------- 

  1    (second age group)  |   d     | c    | 

                                        ---------------------- 

 

 

We then do a logit regression of y on x.  (In Stata, if the generic label for the frequencies is n, the 

command would be logit y x [fweight=n].)  The results would include two coefficients b0 and b1, 

with xbbyit 10)ˆ(log += .  For aggregated data, these would be equivalent to )/ln(0 adb = , the 

age ratio for males, and )ˆ/ˆln()/ln()/ln()/ln(1 bcbcadbcb −=−= , the age ratio for females 

minus the age ratio for males.  We define a measure of transfer, t, on the logit scale as simply 

1bt = .  If this measure is positive, there have been net upward transfers, as would be expected 

when the boundary age is 50.  If it is negative, then there have been net downward transfers, as 

would be expected when the boundary age is 15.  The standard error of t is simply the standard 

error of b1, and the output for the logit regression will give a z test statistic for a test of the null 

hypothesis that t is 0 in the population and a 95% confidence interval for the population value of 

t.  Estimates of the probabilities of downward and upward shifts can be calculated in the same 

way that will be described below for estimates of transfers based on age ratios within the female 

sub-population. 
 

Exactly the same transfer coefficient would be obtained by regressing x on y.  Then the intercept 

would be the log of the sex ratio in the first age group and the slope would be sex ratio in the 

second age group minus that in the first age group.  This would be more consistent with the 

reasoning behind the original formulation, but since misreporting is an issue for age but not for 

sex, the implied causal structure would be problematic.  Also, additional covariates would not 

make sense.  
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The logit regression of y on x can readily be extended to individual-level data and to include 

covariates.  However, the sex ratio approach is only valid when there is no male survey, because 

if there is a male survey there will probably be age tansfers for men as well as women.  DHS 

often has a male survey, especially in recent years, so we will not actually employ the sex ratio 

approach, but its simplicity serves as a good introduction to the age ratio approach, which will be 

used. 

 

 

6.2  Age ratios 

 

Original formulation 

 

We now describe the original formulation of the “age ratio” approach.  The age ratio for an age 

interval is defined to be the ratio of the reported number of cases in that interval, divided by the 

reported number of cases in the preceding age interval (sometimes multiplied by 100).  Because 

of a past history of population growth in almost all countries, and the increase in mortality with 

age, we expect age ratios to be only a little less than one (or 100) at most ages and to decline 

fairly regularly as age increases.  Looking for possible transfers outside the 15-49 interval, 

Rutstein and Bicego (1990, p.8) reported the following relevant age ratios from the 1988 

household survey of Botswana: 

 

  Age  Age 

  Interval Ratio   

  10-14    126 

  15-19      76 

  ....... 

  45-49      73 

  50-54    152 

 

The irregularity of these age ratios clearly indicates displacement from 15-19 to 10-14 and from 

45-49 to 50-54.  To summarize this displacement, Rutstein and Bicego calculated ARi-ARo, 

defined as the age ratio inside (i) the boundary minus the age ratio outside (o) the boundary.  For 

Botswana 1988, this indicator is 76-126 = -50 for the lower age boundary and 73-152 = -79 for 

the upper age boundary, or a total of (-50) + (-79) = -129.  We will build upon the logic of this 

approach, first with aggregated date, and will then adapt it to a statistical model that can be used 

with individual-level data. 

 

 

Revised aggregate-level approach 

 

Focusing on the lower boundary for eligibility, age 15, we identify two age intervals below the 

boundary and two above it: 
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    Age       Observed        Fitted 

  Interval      Frequency      Frequency  

    5-  9   a   a 

  10-14     b  b̂  

  15-19     c  ĉ  

  20-24   d  d 

 

Thus, for Botswana 1988, b/a=1.26 and c/b=.76; frequency d was not used by Rutstein and 

Bicego.  We propose a model to estimate the second and third frequencies (b and c) using the 

first and fourth frequencies (a and d), which are assumed to be reported correctly.  This will be 

done with two assumptions.  The first is that the only error of reporting is in the allocation across 

the second and third intervals.  That is, the first and fourth frequencies are “correct”, aa =ˆ  and 

dd =ˆ , and the sum of the middle two frequencies is “correct”, cbcb +=+ ˆˆ .  Thus it is 

important that the intervals be wide enough for it to be plausible that displacement does not 

extend beyond the middle two intervals. 

 

The second assumption is that the “correct” frequencies have a linear pattern of progression on a 

log scale (most models for frequencies or odds assume some form of linearity on a log scale).  

That is, it is possible to find constants α  and β  such that  α=)ˆ/ˆln( ab , βα +=)ˆ/ˆln( bc , and  

βα 2)ˆ/ˆln( +=cd . 

 

It is not actually necessary to solve for the two constants, because the sum of the three equations 

gives 

 

)(333)ˆ/ˆln()ˆ/ˆln()ˆ/ˆln( βαβα +=+=++ abbccd  , or )ˆ/ˆln(3)ˆ/ˆln( bcad = .  Therefore 

 
3/13/1 )/()ˆ/ˆ(ˆ/ˆ adadbc ==  , which leads to  

 

3/1

3/1

3/1

3/1

)/(1

)/(
)(

)/(1
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)ˆˆ(ˆ

ad

ad
cb

ad

ad
cbc

+
+=

+
+=  and  ccbb ˆˆ −+= . 

 

A coefficient for the amount of transfer could be calculated as the log of the observed ratio in the 

middle two categories minus the log of the expected ratio:  

 

)
ˆ/ˆ

/
ln()ˆ/ˆln()/ln(3/)]/[ln()/ln(

bc

bc
bcbcadbct −−=−= .   

 

With the usual Poisson-based approximations, t has an estimated variance  

 

)9/1)/1()/1()9/1(2 dcbas +++= .   

 

A simple test of the null hypothesis that there are no net transfers between the middle two 

categories would be given by stz /= , which would have an approximately normal sampling 
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distribution if the null hypothesis is true.  (However, see the cautions given below regarding the 

interpretation of a test statistic.) 

 

If bb ˆ<  then the proportion of cases in category 2 that are estimated to be shifted out of that 

category and into category 3 will be  

 

)ˆ/(1ˆ/)ˆ( bbbbbpb −=−= .  

 

 Similarly, if cc ˆ<  then the proportion of cases in category 3 that are estimated to be shifted out 

of that category and into category 2 will be  

 

)ˆ/(1ˆ/)ˆ( cccccpc −=−= .   

 

The z statistic in the last paragraph can be used for a two-tailed test of whether there the level of 

transfers is statistically significant, but it can also be used for one-tailed tests of whether there 

have been significant upward transfers or downward transfers. 

 

This aggregated-data form of the model can be used to conduct a simple check for early evidence 

of age displacement in contexts where it seems likely, using unweighted numbers of cases in four 

successive age intervals.   
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Figure 3.  Estimated percent of cases shifted for values of t.

 
 

 

Figure 2 shows the relationship between the t coefficient and the proportions pb and pc, after 

multiplication by 100, when the observed values b and c are equal to each other.  For example, if 

t=.5, we estimate that 20% of the true number of cases in the interval before the boundary have 
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been shifted upwards into the interval above the boundary.  If t=-.5, then we estimate that 20% of 

the true number of cases in the interval above the boundary have been shifted downwards into 

the interval below the boundary.  The conversion will be depend on the actual observed numbers 

in the two age intervals. 

 

We will illustrate this approach by applying it to the females in the Zambia 2001/02 household 

survey (unweighted).  The frequencies in age intervals 5-9 through 20-24 are a=3047, b=2684, 

c=2039, and d=1789, respectively.  The age ratio for age 10-14 is 2684 / 3047=.88 and for age 

15-19 is 2039 / 2684=.76, leading to ARi-ARo,=-12, suggesting some downward displacement.  

Our method gives 1775.3/)]/[ln()ˆ/ˆln( −== adbc , leading to  

 

5.25708374.1/)20392684(ˆ =+=b  and  

 

.5.2152)8374.1/8374)(.20392684(ˆ =+=c    

 

This suggests that a proportion 053.5.2152/20391ˆ/1 =−=−= ccpc  or 5.3% of 15-19 year old 

women were misreported as 10-14.  We get a transfer coefficient  

 

.09735.3/)]3047/1789[ln()2684/2039ln(3/)]/[ln()/ln( −=−=−= adbct   

 

The standard error of t is s=.03101 so 14.3/ −== stz .   

 

All the coefficients described above for aggregate data can be replicated with a logit regression.  

The crucial step is the construction of two artificial variables.  The first one, called x, 

distinguishes the first and fourth age intervals from the second and third.  The second, called y, 

distinguishes the second interval in each pair from the first interval. 

 

Table 4 defines a 2x2 table that gives x and y and the number of cases in each combination of the 

two.  Specifically, if the interest is in age transfers across age 15, we construct a variable y which 

is 0 for age 5-14, 1 for age 15-24, and missing otherwise.  We construct a variable x which is 0 

for age 5-9 or 20-24, 1 for age 10-19, and missing otherwise.   

 

In this table, the letters a, b, c, and d refer to the number of cases in four successive age intervals, 

sequenced as above.  They are used as frequency weights (fweights in Stata) in a logit regression 

of  y on x, which can be written as xbbyit 10)ˆ(log += .  (The Stata command would be logit y x 

[fweight=n], where n is the generic label for the frequencies.)  The vector of coefficients will 

include intercept b0 and slope b1.  In terms of the frequencies a, b, c, and d, the slope of the logit 

regression will be )/ln(0 adb =  and the slope will be )/ln()/ln(1 adbcb −= .  The transfer 

coefficient can be calculated from the slope and intercept as  

 

10)3/2()/ln()3/2()]/ln()/[ln()/ln()3/1()/ln( bbadadcbadcbt +=+−=−= . 
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Table 4.  Layout of the four successive age groups into a 2x2 table for logit regression approach 

to age tansfers. a: number of cases in first age group (e.g. 5-9), b: number of cases in second age 

group (e.g. 10-14), c: number of cases in third age group (e.g. 15-19), d: number of cases in 

fourth age group (e.g. 20-24). 

 

    x 

0 1 

                                -------------------------- 

0      |   a | b    | 

 y                 ---------------------------  

  1      |  d | c    | 

         --------------------------- 

 

 

 

The standard error of t is given by 111000 )3/4()9/4( ssss ++= .  The ratio z=t/s will have a unit 

normal distribution under the null hypothesis that t=0 in the population.  If t is positive, the 

estimated probability that a case in the second age interval will be transferred up to the third 

interval is  

 

)exp(1

)3/exp()exp(

10

010

bb

bbb
pb

++

−+
= .   

 

If t is negative, the estimated probability that a case in the third interval will be transferred down 

to the second interval is  

 

)exp(1

])3/2exp[(1

10

10

bb

bb
pc

++

+−
= . 

 

We note that the transfer coefficient can also be calculated by setting x=3/2 in the logit 

regression, giving 2/3)ˆ(log 10 bbyit += , and then multiplying by 2/3.  That is, 

10)3/2()]2/3(ˆ[log)3/2( bbyitt +== . 

 

 

Application to individual-level data 

 

The logit regression format can be easily extended to individual-level data. The variance-

covariance matrix for the coefficients will include s00, the estimated variance of the intercept, s11, 

the estimated variance of the slope, and s10, the estimated covariance of the intercept and slope. 

 

One of the advantages of the individual-level format with logit regression is that it allows us to 

incorporate sampling weights and clustering.  It also allows the inclusion of a covariate which 

may affect the amount of transfer.  Suppose that a covariate w, and the interaction term xw, are 

added to the logit regression in the previous paragraph, so the model becomes 
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xwbbwbbxwbwbxbbyit )()()ˆ(log 31203210 +++=+++= .  (Of course, the coefficients with 

subscripts 0 and 1 will generally differ in value from the coefficients with the same subscripts in 

the previous model.)  Then the measure of becomes a function of w, specifically 

)())(3/2()( 3120 wbbwbbwt +++= .  The effect of a unit change in w on the transfer coefficient 

will be 32)3/2()( bbwt
dz

d
+= .  (If z is binary and coded 0/1, then this will be the difference 

)0()1( tt − .)  The easiest way to assess whether w has a significant effect on the transfer rate is to 

divide the slope by its estimated standard error, 333222 )3/4()9/4( ssss ++= , giving a unit 

normal test statistic of the null hypothesis that the slope is 0 in the population. 

 

 

Some results from DHS surveys 

 

The transfer procedure described here was used to check for evidence of transfers of women 

outside the age boundaries of the surveys of women, evidence of transfers of men outside the age 

boundaries of male surveys, and evidence of transfers of children outside the boundary of 

eligibility for health questions.  Downward shifts of women or men and upward shifts of children 

were considered to be substantively significant if they exceeded 10%.  Upward shifts of women 

or men were more common, and were considered to be substantively significant if they exceeded 

20%.   

 

The single survey with the strongest evidence of downward shifts of women was the 1990 survey 

of Nigeria.  The numbers of women (de jure residence, weighted and rounded to the nearest 

integer) were as follows.  The first column gives the observed frequencies and the second 

column gives the two fitted frequencies. 

 

    Age       Observed        Fitted 

  Interval      Frequency      Frequency  

    5-  9         a=3974   a 

  10-14           b=3259        b̂ =2832 

  15-19           c=1733        ĉ =2159 

  20-24         d=1760  d 

 

The proportion of “true” cases shifted downward from age 15-19 to age 10-14 is (1-

1733/2159)=.197 or 19.7%. This is of course an estimate of net transfers; there were probably 

some upward and downward transfers that cancelled out.  The transfer coefficient is  t = -.3601, 

with standard error  .0407, so the test statistic for the hypothesis of no downward transfers is  z= 

-8.86.  This is highly significant, but we caution against placing too much importance on 

evidence of statistical significance. 

 

To see whether downward transfers could be related to education, we use the multivariate form 

of the model with w=completed years of schooling (hv108) of the household head.  The 

distribution of this variable is very skewed.  About 60% of household heads in the 1990 survey 
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of Nigeria had no schooling at all, and the mean was 3.2 years.  The slope of the t coefficient 

with respect to education is .0204, with a standard error of .0088 and a z statistic of 2.31.   

 

The horizontal line in Figure 3 is the overall mean value of the transfer coefficient.  The figure 

also includes two lines that show the fitted value of the transfer coefficient as a function of years 

of schooling.  They have the expected pattern: downward transfers are most likely when the 

houshold head has no schooling, and for the highest levels in the sample, it is negligible.  

Because the education distribution is so skewed, the figure shows the fitted values including 

households in which the household head has no formal schooling (the steeper line) and the fitted 

valus omitting such households (the line that is less steep). 

 

In general one might expect a stronger relationship with the education of the household 

respondent, who provides the interviewer with the household data, than with the education of the 

household head.  For this particular survey, it is not possible to link to that measure.  It should 

also be noted that although schooling is a significant covariate of household transfers in this 

survey, that is not always the case.  Finally, the level of displacement in this survey was so 

conspicuous that special efforts were made in the next survey of Nigeria, in 1999, to reduce it.  

The lower boundary of eligibility was set to 10, and later the women 10-14 were filtered out.  

This device seems to have been largely successful.  It appears to have induced a high level of 

transfer from age 10-14 into age 5-9, but relatively few transfers from age 15-19 into age 10-14. 
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Figure 4.  Transfer coefficient by schooling of household head, Nigeria 1999.

 
   

 

Another application of the procedure is to backward transfers of children’s birthdates.  The 

survey with the highest level of such transfers was the 1991 survey of Pakistan, a country that is 

well known for systematic upward transfers of children’s ages in virtually every data collection 

procedure (see, for example, Pullum, 1990, and Pullum and Stokes, 1997).  The window for the 
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extra health questions in this survey began in January 1986, so the four calendar years that 

straddle the boundary are 1984, 1985, 1986, and 1987.  The numbers of births reported for those 

calendar years, weighted and rounded to the nearest integer, are given below.  The progression 

across birth years is clearly much more plausible for the fitted frequencies than for the observed 

frequencies. 

 

    Time       Observed        Fitted 

  Interval      Frequency      Frequency  

    1984          a=1790   a 

    1985          b=2033        b̂ =1628 

    1986          c=1052        ĉ =1457 

    1987         d=1285  d 

 

The overall value of the transfer coefficient is -.5478, corresponding with backward transfers of 

27.8% of the births that actually occurred in 1986 into 1985. 

 

Figure 5 shows the linear relationship of the transfer function to the mother’s years of schooling 

(v133).  There is a fairly steep gradient by education, such that age transfers are less likely for 

women with more education, but even at the maximum level of education the estimated transfer 

coefficient would be .-35. 

 

About 79% of the mothers of these children had no schooling at all.  If the regression excludes 

those women, there is virtually no change in the regression line.  Both lines are given in figure 4; 

the upper line includes women with no education and the lower line omits them.  (The lines are 

so close that one might suspect a programming error, but they are in fact two distinct lines.) 
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Figure 5.  Transfer coefficient by schooling of mother, Pakistan 1991.
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7.  Conclusions 

 

This paper has attempted to move some longstanding demographic measures of the quality of 

age and date reporting into the modern era of statistical and individual-level data analysis.  Only 

a few applications have been included, but these show how one might be able to develop a better 

understanding of the sources of incompleteness and misreporting. 

 

There have been several references to standard errors, test statistics, and confidence intervals, but 

we recommend extreme caution in their use.  For example, a test of whether there have been net 

transfers using the age ratio approach is simply a test of whether the reported age distribution is 

consistent with our model.  At least some degree of deviation from the model would be expected 

even if there were no reporting error.  The “true” age distribution is a consequence of a changing 

history of fertility and mortality (migration may play a role too) and we must try to avoid 

confounding genuine irregularities in the age distribution with misreporting.  An appendix is 

included as an effort to assess the validity of this model.  For evidence of transfers to be 

convincing, we advise a high standard such as 10% or 20% as well as nominal statistical 

significance.   

 

The multivariate form of Myers’ Index also depends on the validity of the adjustment or 

blending process, and the standard of a uniform distribution after blending.  If Myers’ Index is 

below 5% or so, there is probably little reason to be concerned.  Tests related to incompleteness, 

on the other hand, do not depend on the “true” age distribution or birth dates.  Tests related to 

heaping of age at death 12 months are probably robust with respect to the underlying “true” 

distribution of age at death because of a long reference period, such as ten years. 

 

As mentioned, a natural extension of this work would be to some in-depth multivariate analyses 

of sources of misreporting.  The DHS report by Pullum (2005) largely concerns the estimated 

levels of misreporting across virtually all DHS surveys, but only stratches the surface of an 

investigation into the sources.  These methods could be used to look into variations by many 

characteristics of the respondents other than education.  They also make it possible to look 

further into the role of the interviewer, using either fixed or random effects models.  For 

example, how strong is the evidence that interviewers bear sole responsibility for age transfers?  

Does the probability that an interviewer will shift an age or birthdate depend on the respondent 

having low education?  It seems likely that the interviewer will be more likely to shift an age if 

the respondent is less certain about the true age, suggesting the possibility of interaction effects, 

whereby combinations of some interviewers and some respondents are most likely to produce 

distortion. 

 

Other characteristics of the interview could be important.  It has been hypothesized that the 

actual time of the interview may induce some misreporting.  For example, there may be a 

motivation to shorten the last interview of the day.  Across the scores of interviews conducted by 

any given interviewer, the earliest interviews may differ in quality from the last interviews. 
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Finally, in assessing the consequences of misreporting, it is important to know the level at which 

it begins to impair the important summary measures of fertility, infant and child mortality, 

contraceptive use, child health, etc.  Systematic omission of women age 45-49 from the survey of 

women, or of five-year-old children from the child health portion of the interview, may induce a 

bias in the estimates.   

 

The DHS report (Pullum, 2005) includes comparisons between estimates of age-specific and 

total fertility rates for the same three-year reference period coming from successive surveys.    

For example, if surveys were conducted in the same country in 1995 and 2000, both surveys are 

used to estimate fertility rates during the calendar years 1992-94.  Similar comparisons were 

done for infant mortality rates, but using a five-year reference period.  Several countries show 

substantial differences between successive estimates, exceeding one child in the TFR for ages 

15-44 or 50 points in the IMR.  These discrepancies are probably mostly due to misreporting, 

especially transfers of young children, in one or both surveys, but the linkage is not clearly 

established.  To the extent that both fertility and misreporting, or both infant mortality and 

misreporting, vary according to education or other covariates, misreporting will induce 

misleading estimates of the effect of education or other covariates on fertility.  The multivariate 

approach in this paper may make it easier to model the consequences, as well as the sources of 

misreporting. 
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Appendix 1.  Partial validation of the method to identify age transfers  

 

 

In order to assess the validity of the modified age-ratio procedure to estimate age transfers, the 

version for aggregated data was applied to several five-year age distributions estimated for 1995 

by the Population Division of the United Nations (United Nations, 2003).  The year 1995 was 

selected partly because it was within the range of the DHS survey dates.  It also preceded the 

2000/2001 censuses that most countries had and was sufficiently in advance of the U.N. 

publication date (2003) that the tabulations are probably final estimates for 1995 and not 

contaminated with any projections.  It is possible that in some cases the U.N. data were 

smoothed or interpolated with statistical and demographic methods, which would tend to make 

them more consistent with our model, but we have tried to avoid smoothed data.   

 

Nine tabulated age distributions were selected, representing countries that showed high levels of 

transfers in the DHS report.  Six distributions refer to women in African countries.  The other 

three refer to men in Armenia, Kazakhstan, and Kyrgyzstan.  The model was applied to five-year 

age groups in the range from 0-4 to 55-59, leading to an estimate of outward shifts for ages 5-9 

through 50-54.  The results are given in table A1.  The percentages in column (3) are estimates of 

the percentage of “correct” cases that were shifted upward to the next interval, assuming that the 

age interval occupied position 2 in the four-interval model.  The percentages in column (4) are 

estimates of the percentage of “correct” cases that were shifted downward to the next interval, 

assuming that the age interval occupied position 3 in the model.  If the U.N. tabulations were 

correct, and if the assumptions of the model were correct, all of the percentages in columns (3) 

and (4) would be zero.  Our interest is mainly in whether the model gives spurious evidence of 

shifts in the vicinity of ages 15 and 50, specifically in the estimates for age 15-19 in column (4) 

and for age 45-49 in column (3). 

 

The results given in table A2 indicate that the model worked very well in the African countries.  

The spurious estimates of downward transfers from age 15-19 into 10-14 range from -0.3% to 

2.5%.  These are well below a threshold of 10% used in the report.  The spurious evidence of 

upward transfers from 45-49 into 50-54 range from -4.0% to 2.8%, consistently well below the 

thresholds of 20% used in the report. 

 

Considering that these results come from the African countries with greatest evidence of age 

transfers, we infer that the method was successful in that context.  A somewhat different 

conclusion is reached for men in Armenia, Kazakhstan, and Kyrgyzstan, given in the last two 

panels of table A1.  The percentages in columns (3) and (4) for these panels are generally larger 

in magnitude and more erratic than for the African women.  These spurious estimates of transfers 

do not exceed the thresholds of 10% and 20% used in the report, but they would exceed 

thresholds of, say, 5% and 10%.  There appear to be some genuine inconsistencies between the 

assumptions of the model and the actual age distributions for these countries. 
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Table A1.  Estimated percentages shifted out (+) or in (-) when the four-
category method is applied to UN age distributions (United Nations, 2003).    
 
Column(1):  Beginning of age interval 
Column(2):  Population (in thousands) 
Column(3):  Estimate when the age interval is the second in the sequence 
Column(4):  Estimate when the age interval is the third in the sequence 
 
a. Burkina Faso females 1995.   
 
      (1)     (2)       (3)     (4) 
        0    1000         .       . 
        5     813       0.7       . 
       10     687      -0.3    -0.8 
       15     577       1.0     0.3 
       20     490      -0.1    -1.2 
       25     394       0.3     0.2 
       30     303      -2.2    -0.3 
       35     219       0.5     3.0   
       40     174       0.6    -0.6 
       45     147       0.0    -0.7 
       50     127         .    -0.0 
       55     112         .       . 
 
b. Ghana females 1995.   
 
      (1)     (2)       (3)     (4) 
        0    1385         .       . 
        5    1261       2.1       . 
       10    1168      -2.1    -2.4 
       15     960       0.9     2.5 
       20     805      -1.4    -1.1 
       25     647       1.0     1.7 
       30     546      -0.1    -1.2 
       35     453      -0.4     0.1 
       40     371       0.4     
       45     307      -0.1    -0.5 
       50     250         .     0.2 
       55     202         .       . 
 
c. Kenya females 1995.   
 
      (1)     (2)       (3)     (4) 
        0    2214         .       . 
        5    2200      -1.1       . 
       10    1931      -0.4     1.2 
       15    1605      -0.1     0.4 
       20    1295      -0.9     0.1 
       25    1019       0.6     1.1 
       30     830       0.1    -0.8 
       35     672       1.2    -0.1 
       40     538      -0.7    -1.6 
       45     392      -4.0     1.0 
       50     274         .     5.2 
       55     243         .       . 
 
d. Madagascar females 1995.   
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      (1)     (2)       (3)     (4) 
        0    1238         .       . 
        5     999       0.7       . 
       10     846       0.2    -0.8 
       15     719      -0.2    -0.3 
       20     604      -0.2     0.2 
       25     507       0.2     
       30     430       0.4    -0.2 
       35     364       1.1    -0.5 
       40     299      -3.8    -1.3 
       45     222       2.8     4.7 
       50     192         .    -3.5 
       55     160         .       . 
 
e. Nigeria females 1995.   
 
      (1)     (2)       (3)     (4) 
        0    8843         .       . 
        5    7386       0.7       . 
       10    6288      -0.2    -0.8 
       15    5207      -0.4     0.3 
       20    4255      -0.0     0.4 
       25    3513       0.0     0.0 
       30    2938       0.2    -0.0 
       35    2487       1.5    -0.3 
       40    2099      -3.2    -1.8 
       45    1602       2.3     3.9 
       50    1371         .    -2.8 
       55    1128         .       . 
 
f. Uganda females 1995.   
 
      (1)     (2)       (3)     (4) 
        0    2031         .       . 
        5    1610       0.6       . 
       10    1329      -0.1    -0.8 
       15    1095       0.8     0.1 
       20     904      -0.2    -1.0 
       25     708      -1.9     0.3 
       30     535       1.1     2.4 
       35     443       0.4    -1.3 
       40     374       0.4    -0.5 
       45     314       1.1    -0.4 
       50     256         .    -1.4 
       55     188         .       . 
 
g. Armenia males 1995.   
 
      (1)     (2)       (3)     (4) 
        0     140         .       . 
        5     176      -3.0       . 
       10     167      -2.2     3.0 
       15     143      -0.9     2.4 
       20     127      -1.3     1.0 
       25     124       5.8     1.3 
       30     144       1.7    -5.6 
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       35     141      -2.4    -1.8 
       40     105      -0.7     3.0 
       45      70     -17.3     1.0 
       50      44         .    19.0 
       55      79         .       . 
 
h. Kazakhstan males 1995.   
 
      (1)     (2)       (3)     (4) 
        0     753         .       . 
        5     940      -7.4       . 
       10     810       1.1     7.4 
       15     750       1.2    -1.2 
       20     696      -6.5    -1.4 
       25     599       9.6     6.6 
       30     708      -3.3    -9.8 
       35     642       3.6     3.4 
       40     545      -7.8    -4.5 
       45     340      -5.5    10.4 
       50     271         .     6.2 
       55     393         .       . 
 
i. Kyrgyzstan males 1995.   
 
      (1)     (2)       (3)     (4) 
        0     287         .       . 
        5     297      -2.5       . 
       10     259      -1.2     2.7 
       15     222       1.9     1.4 
       20     202      -3.3    -2.1 
       25     173       4.0     3.6 
       30     172       0.9    -4.4 
       35     154      -0.5    -1.1 
       40     117      -1.0     0.6 
       45      78     -14.1     1.4 
       50      49         .    16.5 
       55      74         .       . 

 

 

Appendix 2.   Illustrative computing routines in Stata 

 

TO BE ADDED 
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