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Introduction 

 
In most demographic applications apart form the samples, some information of the 

relationship of explanatory variable with the dependent variables are known from the 

population level data, obtained as for example from census, registration system, etc.  

However, with the increasing popularity of likelihood based methods, over the years 

more and more emphasis has been placed on estimation from sample data alone, with the 

information from complete enumeration procedures ignored in this estimation. Clearly 

the population level information contains valuable information for statistical analysis 

whose inclusion can lead to statistically more accurate estimates and better inference.   

 

The use of both sample and population information within the framework of likelihood 

principles and more specifically for generalized linear models has been proposed by 

Handcock, Huovilainen, and Rendall (2000). In Handcock, Rendall, and Cheadle (2003) 

the methodology has been further developed. They express the population level data as 

(usually non-linear) functions of the model parameters and use them as restrictions to the 

likelihood. The maximum likelihood estimates can then be obtained by maximizing the 

likelihood function under the population level constraints. The method can be 

implemented using any of the widely available procedures for numerical optimization 

with equality constraints.  It also known that the estimates are asymptotically normal, 

unbiased.  An explicit form of the Hessian at the parameter estimates can also be thus 

obtained.  Further one can show analytically that the standard error of the parameter 

estimates are guaranteed to be smaller compared to those with no population restriction.  

However, non-linear equality constraints are in general numerically difficult to compute 

and the constraints time-consuming to code in applications involving multiple population 

level restrictions and even moderate numbers of regressors. 

     

In this note we introduce an alternative method to combine the population level 

information with the sample observations based on the method empirical likelihood. This 

is a 2-step method similar to that of Hellerstein and Imbens (1999), who conducted a 2-

step GMM estimation. In the first step, new sample weights are computed such that the 

population expectation of the dependent variable given a subset of the explanatory 

variables is reproduced in the re-weighted sample. This population expectation is known 

from population-level data. In the second step, unconstrained estimation is conducted 

using the weights from the first step. The Hessian and standard errors derived therefrom 

are separately computed.   

  

Application and Data 
 

The relationship of first childbearing to age and other covariates is modeled using a 

combination of sample data from the Panel Study of Income Dynamics (PSID, Hill 1992) 
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and population data on first childbearing by age only from NCHS, compiled by Schoen 

(2003). The sample data are person-years of exposure to first childbearing from 1986 to 

1997 at ages 17 to 30, with additional covariates for marital status, marital duration, and 

standard socio-economic variables available in panel data such as race/ethnicity, 

education, and earnings. The population data are age-specific first-birth probabilities. The 

shape of the first-birth probability function with age is complex, attaining an early peak at 

age 20 and second, higher peak at age 28 (see Figure below). Such a function is difficult 

to model with sample data only, as it is not easily amenable to a parametric specification 

as, for example, using a polynomial representation of birth by age. The sample data, 

moreover, are too sparse for a statistically reliable non-parametric estimation of the birth-

by-age function. The application is therefore one for which the population information 

may be especially useful in deriving an estimated relationship of births by age and other 

covariates.  

 

Methodology 

 

Suppose Y is the indicator of the birth, mI  is the indicator of marriage, jI is the indicator 

for the jth  age, 17,18,...,30j = .  Also letD  denote the marital duration. We ignore other 

covariates in this exposition.  We fit a logistic regression model for the data specified as            
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We use empirical likelihood based methodology to incorporate the age-specific first birth 

rates obtained from the population level information in fitting a weighted logistic 

regression to our data.   

 

In the first step, we derive sample weights that result in age-specific first-birth 

probabilities from the weighted sample matching those of the population probabilities. 
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The calculation of the maximizing weights depends on the (logistic) functional form (1.1) 

between Y and the explanatory variables and on the population level information through 

the additional restrictions imposed on the optimization problem.  Without these extra 

constraints (1.2) is maximized for 1

i
w n

−= , for all 1,2,...,i n= .   

  The restrictions imposed by the model in (1.1) are through its score functions, which are 

known to have zero expectation.  

 Suppose  ( , , , 17,...,30, )m j

i i i i
y I I j d=  be the observations in the sample, 1,2,...,i n= . By 

defining  
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the constraints on the weights 
i
w  through the score is given by  
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Suppose for 17,18,...,30j = ,
j

φ  denote the age-specific first birth rates. Then assuming 

that 
j

φ  was obtained without any sampling error we can assume that for 17,18,...,30j =  

  

(1.8) ( )j
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From (1.8) the constraints imposed on the weights by the population level information are 

given by  
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which may be simplified to  
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In most of the cases the model parameters can be estimated fairly easily through a two 

step estimation procedure.  In the first step of the procedure we maximize (1.2) for the 

non negative weights
i
w′ , 1,2,...,i n=  s.t. 

1
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′ =∑ and the equality constraints in (1.10)  

are satisfied.  The second step is to compute the vector of parameter estimates β̂ .  They 

can be readily obtained from a weighted logistic regression with 
i
w′  as weight for the i th 

observation for 1,2,...,i n= . The first step only involves maximizing (1.2) with linear 

equality constraints.  This has been studied in details by Owen (2001).  Instead of solving 

the primal problem one solves the dual one.  This by itself reduces the constraints to 

linear equality constraints. Moreover by defining a convex pseudo-logarithmic function 

over the whole space, one can maximize (1.2) unconstrained.   
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The alternative and more general procedure is to get the parameter estimates through a 

nested two step maximization, where the outer maximization is unconstrained and the 

inner one is constrained by linear constraints given in (1.10). The standard errors are 

obtained from the Hessian matrix calculated at the value of the parameter estimates.  

 

Results 

 
The performance of the constrained logistic regression model as described above can be 

compared with the unconstrained logistic regression 

using the sample data only. The plot in figure to the 

left compares the age-specific first birth rates 

predicted by the constrained and the unconstrained 

regression procedure with the known population 

values of the same.  It is clear that the age-specific 

first birth rates predicted by the constrained model 

are exactly equal to the population values.  Thus 

these predicted first birth rates drop slightly for age 

21, 22 and 23, which is also seen in the population.  

On the other hand the values of the age-specific first 

birth rates predicted by the unconstrained model are 

same as the age-wise proportion of first births 

observed in the sample.  Thus they vary 

unsystematically and are not close to the population values. 

 

The main advantage of putting the constraints based on the population level information 

is in the reduction of standard error of the model parameters. This in turn allows for a 

non-parametric function of age (indicator variables for each single-year age) to be used in 

the estimation.    

   

The standard errors are much lower for all variables in the constrained model (see right-

hand plot) than the unconstrained model.  The reduction is substantial for the intercept 

(related to the indicator for age 17) and age indicators. The standard errors about the 

other, unconstrained covariates (marital status and marital duration) are slightly below 
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those of the unconstrained model.  A theoretical explanation for this phenomenon is 

given in Handcock et al (2003).   

 

 

 
In the figure above, the first-birth probabilities for married versus unmarried women are 

plotted. The two lines with diamonds give our best estimates, using all the information 

available in both sample and population data. The weighted sum of the two lines always 

sums to the overall population line (with crosses joined by a dotted line). At the youngest 

ages, very few women are married, but those who are have a much higher first-birth 

probability. In this case, first birth (or conception) may be causing women to marry. Most 

early first births, however, are non-marital, and the predicted non-marital first-birth 

probability line is at these ages very close to the overall population constraint line. As age 

increases, more women are married, and the age-specific marital first-birth probability 

becomes increasingly close to the overall population first-birth probability, and the age-

specific non-marital first-birth probability increasingly further from it. The constrained 

marital and non-marital first-birth probabilities appear to fit well the sample pattern (see 

the lines with the plus signs), while smoothing the variability shown in the sample 

especially in the case of marital first births. 

 



 6 

References 

 
Handcock, Mark S., Sami M. Huovilainen, and Michael S. Rendall (2000) Combining 

registration-system and survey data to estimate birth probabilities. Demography 

37(2):187-192. 

 

Handcock, Mark S., Michael S. Rendall, and Jacob E. Cheadle (2003) “Improved 

regression estimation of a multivariate relationship with population data on the 

bivariate relationship” CSSS Working Paper, University of Washington, Seattle. 

 

Hellerstein, J., and G.W. Imbens (1999) Imposing moment restrictions from auxiliary 

data by weighting Review of Economics and Statistics 81(1):1-14. 

 

Hill, M.S. 1992. The Panel Study of Income Dynamics: A User's Guide.  Newbury Park, 

California: Sage. 

 

Owen, A.B. (2001) Empirical Likelihood.  Chapman & Hall/CRC.  

 

Schoen, R. (2003) “Insights from Parity Status Life Tables for the 20th Century U.S.” 

Population Research Institute Working Paper 03-04, Penn State University. 

 

 

 


