Coming of Age in Troubled Times: The Impact of Economic Recessions on the Transition to Adulthood

Ross Macmillan and Jennifer Schultz

Support was received from the University of Minnesota College of Liberal Arts Undergraduate Research Opportunities Program, the Life Course Center and Ron Anderson. We thank Eric Tranby and Laura Weinzierl for research assistance

- development occurs in historical context
 - Stretches from Thomas and Znaniecki to C.W. Mills to Elder to Modell to
 - unique historical events
 - Historical conditions provide an environment of opportunity and constraint that shapes pathways of the life course

In the contemporary era, there is increased attention to the "new" economy and its implications for the life course The transition to adulthood has been the object of particular attention

- Against this backdrop, there are a number of open questions There really are no current assessments of the impact of changing
 - "new" economy
 - the impact of economic context in a multi-dimensional way

 - Theoretical development is also lacking
 There is no general theory that links the unfolding life course, social location, There is no specific theory that indicates how exactly the life course is re-structured and for whom it is restructured

- The life course can be seen as a structure of embeddedness Individuals embedded in roles, roles embedded in role configurations, role role configurations embedded in life paths, life paths embedded in broad
 - Following Sewell, these structures can be viewed as the outcome of schema-resource nexuses
 - · Schema indicate the cultural templates for putting together social roles and
 - They shape the order and timing of roles over the life span

Schema vary in their legitimacy both within and across social groups Includes societies (historical and cross-cultural), subcultures or social groups within societies (i.e., race, class, gender, cohort, region, nativity)

- Indexes the 'taken for grantedness' of particular life course structures;
 Differs from earlier discussion of the cultural basis of the life course (e.g.,
- A key element of a structural approach is that life course structures will be mutually constituted by schema and resources (Sewell, 1992)

 - "If schema are to be sustained and reproduced over time...they must be validated by the accumulation of resources that their enactment engenders" (Sewell, 1992, p. 13). Sets of schemas and resources constitute structures only when they mutually imply and sustain each other over time

- Roles, role configurations, life paths as resources
 - All roles have resource implications, short- and long-term
 - Roles (configurations, life paths) are vehicles of resource accumulation and resource expenditure
 - Resource implications of roles depends on location in role configurations (joint occurrence of roles) and the life span (order and timing in the life course)
 - Roles, role configurations, and life paths are tied to other social structures with their own schema/resource nexuses

Implications for legitimacy

- Validated life course structures are those tied to schema/resource nexuses that are mutually sustaining
- Only structures that can and are reproduced by a social group group will be validated and have broad occurrence (i.e., "taken-for-grantedness")
- Life course structures will have a population/demographic resonance to the extent that they are resource generating and schema reproducing reproducing
- schema-resource nexuses of other social structures At a population level, stratification shapes life course structure
 - At an individual level, individual "gravities" towards a life course structures depend upon the availability/deployment of resources

- To begin, *i*(*t*) may denote a multidimensional matrix or crossclassification of a set of observed variables defining various states of some social roles at a specific age.
 - In studying the transition to adulthood, these would typically involve the presence or absence of various school, work, and family roles.
- Now let *m*(*t*) represent the unobserved, *latent role configurations* configurations or role configuration schema at age t in which the the observed role configurations i(t) are embedded. These describe the fundamental set of cultural scripts for how the observed observed roles i(t) may "go together" in a population.

- Finally, let j denote the unobserved fife path schema in which the the age-graded set of unobserved role configuration schema m(t) are embedded.
- Conceptually, these *latent life paths* give the fundamental set of cultural scripts for how to (attempt to) "put together" a life course in a population, population.
- Given a structure of embeddedness and considering the individual roles 1,...,k that make up the vector of observed roles roles *i*(*t*), the joint probability is given by

 $\pi_{i(1)\dots i(T)m(1)\dots m(T)j} = \left[\pi_{i(1)_{i}m(1)}\dots\pi_{i(1)_{k}m(1)}\right]\dots\left[\pi_{i(T)_{i}m(T)}\dots\pi_{i(T)_{k}m(T)}\right]\pi_{m(1)j}\dots\pi_{m(T)j}\pi_{j}$

 To obtain estimates for these probabilities, latent class modeling techniques may be used.

- However, typical algorithms used to obtain full information maximum likelihood (FIML) estimates for latent class models dictate that we construct the entire transition matrix.
 - Considering even a small number of roles (e.g., five), simple simple coding of states (e.g., dichotomies), and a limited number of time periods (e.g., five), the full cross classification classification has (2⁵)⁵ or 33,554,432 cells.

Estimation of the conditional probabilities involves two stages.
 First, we obmin each set of probabilities by estimating latent class models models on the *T* cross-classifications of roles observed at each age *t*.
 This produces estimated latent role configurations for each age *t*, as well as FIML estimates for the corresponding sets of probabilities.

Second, we then obtain conditional maximum likelihood (CML) estimates estimates for the set of parameters by estimating latent class models on realizations of the latent role configuration transition table. • The realization of this latent transition table is obtained through a "halfway implementation of the multiple imputation method" that uses probabilistic assignment using mndom draws from a uniform distribution.

 Once constructed, latent class models are estimated on this transition table. This generates estimates of *latent life paths* that link *latent role configurations* over time.

Statistical Properties:

 These conditional maximum likelihood (CNL) estimates are consistent, asymptotically unbiased, and efficient in the local likelihood area defined by the first stage FIML estimates.

 With sufficient random draws, asymptotic properties are more more likely to hold and have lower sampling variability than their FIML counterparts.

They will be superior from a measurement error standpoint to to the traditional approach (i.e., modal assignment). With sufficient random draws on each case, we completely account account for any measurement error in assigning cases to latent latent classes.

Quantities of Interest

- Goodness of fit statistics for both the first- and second-stage provide guidance on the number of latent role configuration and latent life paths that characterize the age-graded observed role configurations and transitions in the sampled population.
 Inducate-sthe extent of heterogeneity
 - Conditional probabilities of both observed roles given latent role configurations and role configurations given latent life paths
 - These provide descriptions of roles embedded within role configuration schema and role configuration schema embedded within life path schema

Latent class probabilities indicate the dominance (legitimacy) or density
of a particular latent role configuration or life paths

 Indicate the proportion of a sampled population that is characterized by a given latent role configuration or life path Experted role probabilities given latent life paths can be calculated using using simple algebraic manipulation of conditional probabilities across singes

$\pi_{i(t)_{i}|j} = \sum_{m(t)} \pi_{i(t)_{i}|m(t)} \pi_{m(t)|j}$

- These reveal the across-age distributions of role probabilities within each each latent life path. They show:
 - 1) the dynamic relationship among social roles over tin
 - 2) the probabilistic occurrence, order and timing of social roles over time.

 3) heterogeneity in life paths and the variable character of life course schema schema through the temporal process by which lives unfold over time.

That is, they explicitly reveal the underlying structure of the life course.

Impact of Economic Context on the Transition to Adulthood

Schema should be generally resilient

- Economic recessions may "shuffle" role configurations at key ages, but should "correct" themselves at later ages to conform to dominant schema
- Reflects the schema-resource nexus that provides the foundation for life course structures

The impact of economic recessions should vary by scheme.

- schema
 - Some schema will be extremely "resilient," others may be more susceptible to change
 - Reflects the specific role that employment plays in the transition to adulthood and its interlock to other social roles

Collective validation should be more variable

- Individuals/Groups will adopt (and reproduce) particular life course structures in economic recessions in light of problems
- in realizing particular life path schema
 - At a societal level, the distribution of the population across life course structures will change
 - At an individual level, (global) gravities towards life course schema will change

Also expect variation by race and sex

- Race-sex specific schema are variably connected to employment and recessionary conditions
- Economic recession have greater or lesser effects on different groups
 - Need to specify this more formally...

Relation to existing theoretical work

- This perspective may be a flat alternative to those who argue that life courses adjust to socio-economic conditions, particularly in the short-term
 - Fussell's dilemma...
- This perspective may provide specificity in understanding for whom or for what life paths economic recessions matter
 - This furthers our understanding of the structural embeddedness of individuals, roles, role configurations, life paths, social location, and socio-historical context

The 1980's Recession as "Natural Experiment"

- In 1979, the Bureau of Labor Statistics began a second phase of their National Longitudinal Surveys
 - A stratified sample of 12,686 males and females ages of 14 to 22
 - Over-sampled African-American, Hispanics, and "poor" whites
 - Data were collected annually through 1994 and bi-annually thereafter
- The combination of several age-cohorts and the longitudinal design create "windows" of exposure to the 1980s Recession

Cohort by Time I	Period Se	elections,	NLSY7	э.								
				Rece	ssion							
Cohort	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Recessionary I	14	15	16	17	18	19	20	21	22	23	24	25
Recessionary I	15	16	17	18	19	20	21	22	23	24	25	26
Recessionary II	16	17	18	19	20	21	22	23	24	25	26	27
Recessionary II	17	18	19	20	21	22	23	24	25	26	27	28

Subaa	male and Cabor	t Franciac	
Subsa	Cobort L	Cohort II	Total
Non-white Females	457	592	1049
Non-white Males	485	563	1048
White Females	580	753	1333
White Males	625	710	1335
Total	2147	2618	4765

Measures
 Key Markers of the transition to adulthood School – whether the respondent reported being in school during the interview year (yes/no)
 Employment – involvement in paid labor (full-time [35 or more hours/week], part-time [1-34 hours/week], not employed)
- Marriage - respondent's marital status (ever married/other)
 Parenthood – respondent has a child (any children/no children)

					C			(M. 1						
					G	oodr	less	1 10 3	110					
able: Go	odness of fi	t statistics, I	RC, White	Males 14-1	5			Table: Go	odness of fi	t statistics, I	.RC, Non-v	vhite Female	s 14-15	
Year	Model	L ^e	df	p-value	ID	BIC		Year	Model	L ^a	df	p-value	ID	BIC
1981	1							1981	1					
		26.796	14.000	0.020	0.014	-63.333				9.338	14.000	0.809	0.017	-76.407
	īV	3.827	7.000	0.800	0.004	-41.238			IV.	9.201	8.000	0.326	0.017	-39.797
1983	i i	81 998	14 000	0.000	0.066	-8 131		1983	i i	40.631	13,000	0.000	0.080	.38 990
	ü	9.019	8.000	0.341	0.010	-42.483			iii	11.868	8.000	0.157	0.034	-37.129
	IV	13.400	5.000	0.020	0.012	-18.788			IV	1.088	6.000	0.982	0.012	-35.661
1985	1							1985	1					
	П	148.038	13.000	0.000	0.189	64.347			11	74.772	12.000	0.000	0.132	1.275
	D/	13.363	2.000	0.064	0.018	-31.701				26.812	6.000	0.000	0.088	-9.936
		10.000	2.000	0.001	0.017	0.200				0.440	0.000	1.000	0.010	0.440
1987	1							1987	1					
		67.099 19.606	12.000	0.000	0.108	-10.154				16.841	12.000 8.000	0.155	0.066	-56.655
	īv	17.927	1.000	0.000	0.027	11.489			īv	1.427	1.000	0.232	0.011	-4.698
1080								1080						
	i i	34.023	12.000	0.001	0.055	-43.230		.569	i.	30.461	12.000	0.002	0.085	-43.035
	- iii	10.855	8.000	0.210	0.018	-40.647			iii	17.620	6.000	0.007	0.032	-19.128
	īV	5.119	4.000	0.275	0.015	-20.632			IV	10.728	0.000	1.000	0.022	10.728
lote: Pref	erred mode	l in bold						Note: Pref	erred mode	in bold				

		White F	emales	Non-white	e Females	White	Males	Non-whi	te Males
	Veen	Cohort 1	Cohort 2	Cohort 1	Cohort 2	Cohort 1	Cohort 2	Cohort 1	Cohort
16/17	81/79	2	2	2	3	2	2	2	2
18/19	83/81	3	3	3	3	3	2	3	2
20/21	85/83	3	3	3	3	3	3	3	4
22/23	87/85	3	3	2	3	3	3	3	4
24/25	89/87	3	3	3	3	3	3	2	2

Characte	riza	tion	s of	Lif	e Co	DIIIrse	≥ Sti	muei	ures	· Co	mdit	ion	al
0111111010										. 00		1011	
		21113	il Lai	tent	: Cla	iss P	rob	abil	ities				
т	`able A1	. Latent F	Role Conf	guratio	is and Pro	babilities	by Age	, Non-whi	te Female	s, Cohort	1.		
	Ages	16-17	A	zes 18-1	9	A	ges 20-2	21	Ages	22-23	A	es 24-2	25
	I	п	I	Ш	ш	I	П	ш	I	П	I	П	Ш
Population Probability	0.857	0.143	0.409	0.327	0.264	0.415	0.314	0.271	0.610	0.390	0.408	0.315	0.271
Conditional Probability	airen O	beamed R	oler										
Student	1.000	0.003	0.895	0.133	0.033	0.023	0.722	0.000	0.050	0.186	0.039	0.035	0.179
Full-time Worker	0.028	0.092	0.040	0.096	0.317	0.275	0.105	0.628	0.388	0.616	0.220	0.757	0.679
Part-time Worker	0.253	0.246	0.317	0.054	0.147	0.108	0.407	0.000	0.061	0.157	0.111	0.030	0.110
	1 000	0.755	1.000	0.717	0.853	0.576	0.941	0.822	0.482	0.839	0.513	0.154	0.80
Single									0.000	0.161	0.407	0.040	0.10
Single Married	0.000	0.246	0.000	0.283	0.147	0.424	0.059	0.178	0.518	0.101	0.487	0.840	0.194
Single Married	0.000	0.246	0.000	0.283	0.147	0.424	0.059	0.178	0.518	0.161	0.487	0.840	0.194

	Lat	ent Life Pa	aths	
		I	Ш	III
Population P	robability	0.446	0.285	0.269
Latent Role C	onfiguratio	ns		
Ages 16-17	I	0.234	0.051	0.086
-	п	0.766	0.949	0.914
Ages 18-19	I	0.651	0.027	0.104
-	Π	0.152	0.708	0.527
	Ш	0.197	0.265	0.369
Ages 20-21	I	0.923	0.014	0.008
	п	0.052	0.663	0.441
	ш	0.025	0.324	0.551
Ages 22-23	I	1.000	0.023	0.596
	п	0.000	0.977	0.404
Ages 24-25	I	0.635	0.032	0.435
-	П	0.344	0.161	0.427
	Ш	0.021	0.808	0.138

Sensitivity Analyse

- Separately estimated LRC's and LLP's for WM, NWM, WF, & NWF by cohort (ages 14, 15, 16, 17, 18)
- Re-configured variables and models

 Added "away" variable
- Collapsed "marriage" variable
 Scrambled start values for all groups and re-estimated models
- Replicated Macmillan & Eliason (nd) using separate start values
- Pulled random sub samples of 75%, 50%, 25%, 10%, 5%, and 1% and assessed robustness of LCP's and CP's.
- Simultaneous Group Models

Extending the Two-stage Latent Class Model

- Adapt this procedure to the study of race-sex-cohort variation in latent structures of the life course by considering goodness of fit of homogeneous and heterogeneous models
 - Homogenous models have parameters that are "fixed" to be equal across cohorts
 - Constrains latent role configurations and latent life paths to be the same
 - Heterogeneous models do not constrain parameters and cohorts are free to vary in the character and content of their latent life course structures
 - Fit to the data indicates the degree to which either specification provides a better or worse fit to the data

Comparisons of Constrained and Unconstrained Models

odness	of Fit Stat	istics, Simi	ultaneous G	iroup Mode	al, Non-whi	te Females					
Sample	Class	Model	Ľ	df	p-value	ID	BIC	ΔL ^z	۵df	Ap-value	conclusion
BF-16	1.1	Hetero	29.674	27.000	0.329	0.021	-158.127	31.574	8.000	0.000	sig-hetero
	÷.	Hetero	28.181	17.000	0.043	0.047	-90.065	19.079	12.000	0.087	nonsig-homo
		Hullio	47.200	29.000	0.018	0.038	-104.402				
BF-18		Hetero Homo	81.170 136.477	25.000 34.000	0.000	0.077	-92.720 -100.014	55.307	9.000	0.000	sig-hetero
	1	Hetero Homo	26.922 63.723	15.000 28.000	0.029	0.033	•77.412 -131.034	35.801	13.000	0.000	sig-hetero
BF-20		Hetero	151.454	24.000	0.000	0.133	-15.480	7.898	10.000	0.639	nonsig-homo
	1	Homo	159.352	34.000	0.000	0.131	-77.138	0.777	44,000	0.770	
	- E.,	Homo	45.845	27.000	0.013	0.059	-141.956	2.111	14.000	0.778	nonsig-nomo
BF-22	1.1	Hetero	75.808	24.000	0.000	0.085	-91.126	17.181	10.000	0.070	nonsig-homo
	- 5-	Homo	92.990	34.000	0.000	0.097	-143.500	14 712	15 000	0.472	possia homo
	÷.	Homo	33.911	27.000	0.169	0.058	-153.890	14.715	13.000	0.471	indiaig-indiaid
BF-24	1.1	Hetero	57.397	24.000	0.000	0.066	-109.538	1.882	10.000	0.997	nonsig-homo
	- ii -	Hetero	28.552	14.000	0.008	0.049	-68.826	3.850	13.000	0.993	nonsia-homo
		Homo	32,402	27.000	0.218	0.051	-155.399				

- Some evidence that recessionary conditions influence the timing of transitions but these are specific to certain LPs and certain race-sex groups
 - Delayed parenting [NWF (LLP I & III) and WF (LLP III(II) & IV)]
 - To be expected, but race-sex variation is not
 - Delayed exit from schooling (i.e., warehousing) [NWF (LLP 1 & II) -and NWM (LLP 1 & III)]
 - More rapid exit from schooling [WF (LLP I(III))]

- Little evidence that the interlock of social roles in the transition Employment and marriage and marriage and parenthood are unaffected
 Even the multifaceted transition (younger cohort of NWF) is not "re-ordered" Some evidence that collective validation varies across cohorts given life paths Moderate evidence for NWF and NWM
 Strong evidence for WF Recessionary conditions have virtually no impact on the transition to adulthout nave within y its impact of the transition to adulthout among WMs – Life paths are virtually identical in expected role probabilities, the interlock of role trajectories over time, and expected population probabilities

 In general, the influence of recessionary conditions on the transition to adulthood highly variable depending on both the immediate life course context (i.e., latent life path) and broader social position (i.e., race-sex)

Life Course Theory

- · Focus on large scale patterns of social change, rather than short-term historical
 - Events are still important but they must have particular features

Cumulative Continuity and "Turning Points"
 Is there a need for a further concept of life path "gravities"?

Stratification in the Life Course

Stratification becomes a much more complex story when we take account of 1) the structure of embeddedness; and 2) the intersection of age, period, and cohort

Schema of the life course are quite resilient and highly 'structured' rather than 'individualized' Economic Recessions and the Structuring of the Life Course The key issue appears to be for whom and for what scripts do economic recessions matter Connections between school, work, and family Have family roles become decoupled from school and work? General Stratification Can conceive of stratification processes as showcased by the structure of embeddedness that we describe Provides a dynamic, contingent context for thinking about social stratification

atent Life	Path Sele	ction.							-						
Sample	Model	Lz	ď	p-value	ID	BIC	Sample	Model	L*	ď	p-value	ID	BIC		
BF14	1														
		121.162	90.000	0.016	0.178	-430.059	BF16	1							
		61.865	83.000	0.960	0.112	-446.484			190.874	142.000	0.004	0.206	-715.584		
	IV V	29.540	76.000	1.000	0.058	-435.936			132.82/	133.000	0.488	0.142	-/16.180		
	1	au:430		1.000	0.040	-040.040			72.626	116.000	0.000	0.005			
BM14	1						BM16	- í -	10.020		0.399	0.095	-000.002		
	ů.	136.184	90.000	0.001	0.181	-420.389		i.	165.692	108.000	0.000	0.180	-518.354		
		87.040	81.000	0.303	0.125	-413.876			103.085	98.000	0.343	0.123	-517.624		
	IV	67.402	75.000	0.722	0.094	-396.409		IV	70.862	89.000	0.921	0.096	-492.843		
	v	48.839	67.000	0.953	0.079	-365.499		v	54.409	82.000	0.992	0.085	-464.960		
WF14	1						WF16								
	- i	271.326	144.000	0.000	0.253	-644.950		i i	286,770	142.000	0.000	0.239	-653.847		
	111	133.099	136.000	0.554	0.151	-732.273			155.121	133.000	0.092	0.155	-725.880		
	IV	56.842	130.000	1.000	0.071	-770.352		IV	90.882	124.000	0.989	0.092	+730.502		
	v	45.556	123.000	1.000	0.059	-737.097		v	79.048	114.000	0.995	0.085	-676.095		
WM14	1						WM16	1							
	- ú	227.283	143.000	0.000	0.210	-693.316		i.	200.742	91.000	0.000	0.206	-396.697		
		115.267	136.000	0.901	0.103	-760.267			92.845	83.000	0.216	0.123	-452.072		
	IV	60.702	128.000	1.000	0.078	-763.330		IV	70.162	76.000	0.667	0.100	-428.798		
	v	42.869	120.000	1.000	0.056	-729.661		V	63.359	70.000	0.700	0.085	-396.210		