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Abstract. In the recent literature the study of life courses (or trajectories) as con-
ceptual units has been approached from the statistical point of view. Techniques
based on the analysis of sequences of states, and in particular Optimal Matching
Analysis (OMA), have been used to build clusters of life courses. Ideal-typical se-
quences in groups can then be extracted. Proposals on the prediction of life course
sequences have been made by McVicar and Anyandike-Danes (2001), who use multi-
nomial logit models to study the determinants of cluster membership, adopting thus
a two–step approach. The main problem with this approach is that cluster found
not considering the prediction purpose may be hardly predictable. We here propose
a new algorithm, modifying the first step of this procedure. Clusters are still ob-
tained considering OMA as a basis for the definition of distance between individual
trajectories. Nevertheless, the predictive problem is taken into account also in the
first step, when clusters are formed. The aim is to define clusters that are bet-
ter predictable given a set of covariates. We apply this algorithm to data from the
British Household Panel Survey (BHPS) on the employment and family trajectories
of women, and we show the advantage of the proposed algorithm.

Keywords: life course analysis, cluster analysis, multinomial logit model, em-
ployment and family trajectories.

1 Introduction

In this paper we consider how to analyze individual trajectories over the
life course, as collected using retrospective or panel surveys. We start from
a representation of life course as sequences of states and we analyze such
sequences as a whole conceptual unit, adopting the approach known as “se-
quence analysis”. In particular, our attention is devoted to the problem of
predicting life courses. More specifically, if S denotes the trajectory followed
by a given individual (say, from age a to age b), our aim is to predict S on
the basis of a set of explanatory variables that are available before age a.

When analyzing sequences of states, the frequency of specific trajectories
will in general be very low, so that it is not possible to directly predict S
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using standard techniques such as multinomial logit models, or classification
trees (Breiman et al., 1984). This is probably the reason why the prediction
problem has so far received less attention in the literature on the sequence
analysis of life courses. Most attention has been devoted to the simplification
of the data structure; this aim has been often achieved by applying cluster
analysis to individuate ideal-types of trajectories.

The key methodological problem of clustering sequences is usually solved
in the literature by applying standard clustering methods to a properly de-
fined distance (or, better, dissimilarity) matrix. The main methodological
challenge in this case is how to suitably measure dissimilarity between two
sequences. Optimal Matching Analysis (OMA), introduced to the social sci-
ences by Abbott (see Abbott, 1995) is the most popular approach.

A first proposal in the direction of predicting sequences is the two–step
procedure proposed by McVicar and Anyandike-Danes (2001). In this pa-
pers, the response variable in the prediction step is not the whole sequence,
S, but, rather, the output of the clustering procedure based on OMA, C.
Cluster membership is hence explained on the basis of the available explana-
tory structure, via multinomial logit models.

In the first step of this procedure, we have a first simplification, from the
sequence, S, to the cluster, C. In this simplification the prediction problem
is not taken into account.

In the second step of the procedure, we have a prediction for C obtained
via the multinomial logit model, Ĉ.

In a sense, the described approach consists of two steps which are not
“coherent”, in the sense that two different criteria and scopes are pursued.

The main problem with this kind of approach is that a great effort is
spent in the description and the characterization of the obtained clusters,
C. Nevertheless, as we will show in Section 4, the clusters Ĉ obtained after
multinomial logit models are likely to have different characteristics when
compared to the original clusters. This is due to the fact that the aim of
standard clustering techniques is to obtain homogeneous clusters, so that the
prediction problem, which is the main object of analysis, is not taken into
account when forming clusters.

In this paper a new criterion is presented to implement this two–step
procedure. In particular, the first step of the procedure is modified, and
clusters are obtained by explicitly taking into account the prediction problem.

We here innovate on the existing literature on sequence analysis by intro-
ducing a new technique that allows to obtain clusters of life course sequences
that are predictable, given a set of observed covariates. This problem is par-
ticularly relevant if one would like to build ideal-typical trajectories for which
it is important to assess the determinants. As in the papers by McVicar and
Anyandike-Danes (2001), this is clearly motivated by policy purposes.

The paper is structured as follows. In Section 2 we present the data we
focus on, and the coding of states for our sequences. In Section 3, we shortly
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review the methodological approaches that have been followed in the litera-
ture on sequence analysis to obtain clusters. Section 4 describes the two–step
approach proposed by McVicar and Anyandike-Danes (2001) and illustrates
results obtained for our data. Section 5 is devoted to the description of our
prediction–oriented clustering algorithm and to the results of the application
to our data.

2 Family-work sequence data and the coding of states

For the empirical analysis of this paper, we focus on family-work trajecto-
ries during early adulthood of British women, as surveyed in the British
Household Panel Study (BHPS from now onwards). We select women born
from 1960 to 1968, and we focus on the age span 13-30. For each woman
we build, on a monthly time scale, a sequence-type representation of three
life course domains: employment, co-resident partnership, and childbearing.
After excluding cases with missing information, we could analyze data on 578
women, each of them with 204 time points.

For the coding of states, we proceed as follows. Employment (W) and
partnership status (U) for each month are represented in a dichotomous man-
ner. For what concerns fertility, each woman has 4 possible states according
to her number of children (from 0 to 3 children and over). The (joint) states
in the sequences are obtained by combining the categories of the involved
domains. For example, U means in a certain period a woman has a partner
(does not work and has no children), WU means a woman is employed and
has a partner and 1WU means a woman is employed, has a partner and has
one child. The employment and partnership status can change in either direc-
tion at any time. As concerns fertility, once a number of children is reached,
women cannot reverse to a lower number of children. All possible life course
combinations in a given month yield a total number of 16 states. Table 1
contains a representation of such possibilities.

Table 1. Life course states possible during each month.
State 0 U W WU 1 1U 1W 1WU 2 2U 2W 2WU 3 3U 3W 3WU

No. children 0 0 0 0 1 1 1 1 2 2 2 2 3+ 3+ 3+ 3+
Employment N N Y Y N N Y Y N N Y Y N N Y Y

Union N Y N Y N Y N Y N Y N Y N Y N Y

As concerns the explanatory variables, we have information about the
following indicators: Lclassmu and Lclassda, indicating whether or not the
mother and the father of the individual has a low social class; Bothpar,indicating
whether or not the individual lived with both parents at age 16; Ethnic indi-
cating whether or not the individual has Non-white origin. We also consider
the Region and the year of birth (Doby).
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3 Clustering sequences: methodological issues

The standard approach to the analysis of life course sequences (or trajectory)
is to first define a dissimilarity matrix between trajectories, and then to
apply cluster analysis. The definition of this dissimilarity is done using OMA,
a method measuring the distance between two individuals by taking into
account their full trajectories. The method, originally introduced in molecular
biology to study protein or DNA sequences (Sankoff and Kruskal, 1983), was
extended to sociology by Andrew Abbott. It was then applied in a number
of papers, in most cases to analyze career paths (see among others Abbott
and Hrychak, 1990; Scherer, 1999; Schoon et al., 2001; Stovel et al., 1996,
Halpin and Chan, 1998; Chan, 1994, 1995; McVicar and Anaydike-Danes,
2001; Schlich, 2003; Malo, Munoz-Bùllon, 2003; Stovel and Bolan, 2004).
Abbot and Tsay (2000) provide an overview of the applications in sociology.

The basic idea of OMA is to measure the dissimilarity by properly quan-
tifying the effort needed to transform one sequence into another. In the most
elementary approach, a set composed of three basic operations to transform
sequences is used, Ω = {ι, δ, σ}, where:

insertion (ι): one state is inserted into the sequence;
deletion (δ): one state is deleted from the sequence;
substitution (σ): one state is replaced by another one.

To each elementary operation ωi, ωi ∈ Ω, a specific cost can be assigned,
c(ωi). Suppose that k basic operations have to be performed to transform one
sequence into another one. Then, the cost of applying a series of k elementary
operations can be computed as:

c (ω1, ω2, ..., ωk) =
k∑

i=1

c (ωi)

The distance between two sequences can thus be defined as the minimum
cost of transforming one sequence into the other one. Thus the OMA-distance
takes into account the entire sequences.

A main problem in the application of OMA concerns the choice of the
costs, which is arbitrary. It is common practice to set c(ι) = c(δ) and c(σ) =
2c(ι). Moreover, c(ι) is usually set equal to 1. There is not general agreement
about this choice, and this is maybe one of the major weakness evidenced
for OMA by some authors (see Schlich, 2003, for a discussion; see Wu, 2000,
and Levine, 2000, for criticisms about OMA, and Abbott, 2000, for a reply
to criticisms). As concerns the deletion and insertion operation, their cost is
usually set equal to 1.

In the following analyses we adopt a data-driven approach to define sub-
stitution costs. We define substitution costs as inversely proportional to ob-
served transition frequencies; this suggestion by Rohwer and Pötter (2002)
is implemented in the TDA package. More specifically, consider two states,
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a and b. Let Nt(a) and Nt(b) be the number of individuals experiencing re-
spectively state a and state b at time t, and Nt,t+1(a, b) be the number of
individuals experiencing state a at time t and state b at time (t + 1). The
transition frequency from state a to state b is:

pt,t+1(a, b) =
∑T−1
t=1 Nt,t+1(a, b)∑T−1

t=1 Nt(a)
.

The substitution cost between state a and b is:

c(σ; a, b) = 2− pt,t+1(a, b)− pt,t+1(b, a) if a 6= b

Once the dissimilarity matrix has been defined, standard techniques can
be applied to obtain clusters of individuals (McVicar and Anaydike-Danes,
2001, discuss criteria not involving the OMA–step to obtain clusters of se-
quences). In Aassve et al. (2003), different clustering algorithms were tried
(single linkage, complete linkage, centroid, ward, median) to cluster the con-
sidered data. The solution provided by Ward’s minimum variance algorithm
was chosen (Ward, 1963). Actually, the other algorithms tend to define some
clusters having very high sizes from small, residual clusters. In what follows,
given our emphasis on prediction, we will need to define a sufficiently small
number of clusters that allow to estimate a multinomial logit model of cluster
membership.

3.1 Ward’s clustering algorithm

Before proceeding further, we briefly describe the main characteristics of
Ward’s clustering algorithm, which is strictly connected to the method we
are going to propose.

Consider N individuals to be clustered according to their life sequences.
Let d(i, j) denote the distance, or dissimilarity, between the i–th and the
j–th individual (in our setting d(i, j) is the OMA-distance between the two
individuals).

A measure of the total variability or, better, heterogeneity, characterizing
the whole data set is:

T =
∑

i,j

d(i, j). (1)

Suppose now the whole sample is partitioned into G clusters by the par-
tition CG; a measure of the dispersion within the g–th cluster, Cg, is given
by:

W (Cg) =
∑

(i,j)∈Cg
d(i, j), (2)

and a measure of within-groups dispersion is given by:

W(CG) =
∑

Cg∈CG
W (Cg). (3)
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The quantity B(CG) = T−W(CG) can be regarded as a synthesis of the
distances among or between the G groups.

A commonly used criterion to evaluate the adequacy of a clustering solu-
tion is to compute R2(CG) = B(CG)/T = 1− [W(CG)/T], i.e., the proportion
of the total dispersion accounted for by the G clusters constituting the par-
tition CG.

In a hierarchical agglomerative clustering algorithm, at each step two
clusters have to be joined to form a single cluster. Consider now a G–cluster
partition, (CG), and suppose that (G − 1) clusters have to be obtained by
joining two clusters into a single one. Suppose that two clusters, say Cw and
Cz are joined to form cluster Cwz, and let CG−1 be the resulting partition.
By definition, it will be W(CG) < W(CG−1), and R2(CG) > R2(CG−1). The
increase in the within-groups heterogeneity, will be:

∆R(CG, CG−1) = W (Cwz)−W (Cz)−W (Cw)
= W(CG−1)−W(CG). (4)

In Ward’s algorithm the two clusters to be joined are selected by mini-
mizing the quantity ∆R(CG, CG−1) i.e., by minimizing ∆R2

G−1 = R2(CG) −
R2(CG−1). Hence at each step the clusters to be joined are selected so as to
minimize the decrease in R2. Of course, due to the hierarchy of the procedure,
the maximization of the criterion is conditioned to the solution (partition) at
the previous step.

In the following sections, we will describe the results obtained by applying
Ward’s algorithm to BHPS data, and the results obtained by applying a
multinomial logit model to predict cluster–membership.

4 Clusters and their prediction: a “traditional”
approach

In Table 2 we describe the main characteristics of the clusters we obtained us-
ing OMA and Ward’s algorithm, as concerns the degree of within–heterogeneity.
For each cluster we report the sum of dissimilarities between cases in the clus-
ter, W (Cg) (cfr. equation (2)), the number of cases in the cluster, ng, and
the average W (Cg) = W (Cg)/ng.

Table 2 Distance Within Clusters

Cluster: g W (Cg) ng W (Cg)

1 2705244.7 157 17230.858

2 127893.3 100 12789.133

3 241748.9 56 4316.9446

4 3905192.0 150 26034.613

5 2988869.1 115 25990.166

R2 = 0.270
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To better characterize and describe the obtained clusters, we need now
a synthesis of cases within the cluster itself. In Aassve et al. (2003) criteria
to synthesize clusters of sequences are reviewed and discussed. Following the
therein indications, we consider the medoid (see Kauffman and Rousseeuw,
1990) of each cluster, i.e., the individual (sequence) which is less distant from
all the other individuals in the cluster. The synthesis of the observations in
the g–th cluster is then:

ĝ = arg min
j

∑

i∈Cg
d(i, j).

In Table 3 we report the medoid of each cluster, together with some sum-
mary statistics: the total distance between sequences in the cluster and the
medoid, WM , the averaged distance, WM , and the maximum distance WMax

M .
Since the number of states is very high, we use a s/p (state-permanence)-
representation of the medoid–sequence (Aassve et al., 2003). The state-sequence
is the sequence of the states “visited” by an individual (note that the order-
ing of the visits is important since some states can be visited more than
once). The permanence-sequence is the sequence of the length of the periods
an individual “remained” in each of the visited states. The s/p−sequence
is obtained by combining state and permanence sequence; for example, the
s/p-sequence of the sequence W-W-WU-WU is W2-WU2.

Table 3 Medoids and summary statistics

Cluster: 1 WM =12863.97 WM =81.94 WMax
M =221.12

Medoid: N57-W117-WU30

Cluster: 2 WM =9302.44 WM =93.02 WMax
M =234.57

Medoid: N116-W39-WU49

Cluster: 3 WM =3068.79 WM =54.80 WMax
M =119.52

Medoid: N63-W40-WU101

Cluster: 4 WM =20221.03 WM =134.81 WMax
M =241.47

Medoid: N44-W48-WU29-WUC7-UC25-WUC15-WUCC16-UCC9-WUCC11

Cluster: 5 WM =21112.35 WM =183.58 WMax
M =338.76

Medoid: N65-W15-WU4-WUC2-UC9-UCC65-UCCC44

Our interpretation of the clusters is based on Hakim (2002; 2003), who
studies work-family interrelationship by arguing that there is a subset of
family-oriented women, who are willing to give priority to family formation
over work; there is a subset of work-oriented women, who are on the con-
trary focused on work and careers; there is a majority of women who try
hard to “have the best of both worlds”, combining work and family. This
categorization will help us in characterizing the five clusters obtained from
now onwards.

In Table 4 we report the average number of months spent in each state
for each cluster. Notice that the medoids give information about the followed
trajectories, whereas the average months give information about the relative
importance of each state within the cluster.
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Table 4 Months (mean) spent in each state

Cluster
Variable 1 2 3 4 5

N 55.23 112.20 57.02 52.15 50.17

U 1.51 5.81 3.82 4.59 1.72

W 109.35 39.95 41.46 44.20 23.96

WU 29.54 36.01 98.53 28.17 6.35

C 0.41 0.25 0.81 12.70

UC 1.90 2.02 1.19 15.53 13.25

WC 0.97 0.76 0.00 1.84 5.83

WUC 2.74 3.62 1.64 19.43 3.39

CC 0.04 0.05 0.48 3.83

UCC 1.77 2.35 0.03 9.06 31.89

WCC 0.08 1.43 1.23

WUCC 0.43 0.88 0.28 20.91 6.95

CCC 0.01 4.81

UCCC 3.16 27.75

WCCC 0.85

WUCCC 0.10 2.23 9.33

Table 3 and Table 4 help us in understanding the main features of each
cluster. In Cluster 1, the medoid woman studies for 57 months (that is, up to
almost 18 years). For 117 months (almost 10 years) she then works without
forming a family. At the age of about 28 years she enters a union. Looking at
time spent in each state we notice that the W (more than 9 years on average)
and WU states are prevalent, with the presence of children being rare. Women
belonging to this cluster thus have work-oriented trajectories, with average
education. A similar type of trajectory, with one important difference, is
found for women belonging to Cluster 2. The medoid women spends about
10 years in the initial state, which indicates a prolongation of education. Only
then she starts working, and later starts a union. The prevalence of a long
period spent in the initial state is confirmed by the analysis of mean state
presence from Table 4. Women belonging to Cluster 2 have work-oriented
trajectories, and (probably) higher education. In Cluster 3, the difference is
that the degree of combination between work and family life is higher with
respect to Clusters 1 and 2. In fact, women in this cluster live on average
more than 8 years in the WU, and the medoid gives a picture consistent
with this. Cluster 3 contains women who combine work and partnership,
without having children in their early adulthood. A different combination
strategy seems characteristic of Cluster 4: the medoid woman has a child, then
interrupts work for about two years, goes back to work, has a second child,
leaves work for less than a year and goes back to work. Women who combine
working and having children by going in and out of the labor market belong
to this cluster. In fact, Table 4 shows that there is a greater variability in the
distribution of time spent in each state. Interestingly, almost 40 months are
spent either in WUC or in WUCC, while almost two years are spent either
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in UC or in UCC. Cluster 5 contains the more family-oriented trajectories.
The medoid woman is an example: she leaves work after the birth of her first
child and then goes on up to three children without re-entering the labor
market. Women in this cluster spend on average five years either in UCC or
in UCCC, as mothers of two or more children who are not working.

4.1 Application of multinomial models

Following the strategy proposed by McVicar and Anyandike-Danes (2001),
we applied multinomial logit models to explain cluster–membership on the
basis of the considered explanatory structure. In Table 5 we report the results
relative to global effects. In particular, for each effect, we computed the LR
statistics as the difference between the log-likelihood of the global model
(containing all the variables) and the nested sub-model obtained by excluding
the variable itself (the results were obtained using STATA). Hence the null
hypothesis states that the reduced model is as significant as the complete one
(low p–values “flag” covariates significantly contributing to the prediction of
cluster membership).

Table 5 LR Results

Source DF LR (chi2) Pr >chi2

Intercept 4 11.54 0.0211

LCLASSMU 4 13.89 0.0076

LCLASSDA 4 28.71 < .0001

ETHNIC 4 5.75 0.2184

BOTHPAR1 4 19.11 0.0007

REGION 68 93.71 0.0211

DOBY 32 38.05 0.2132

LR(full) 116 211.6 0.0000

Pseudo R2 0.1177

We notice that the effects are significant, with an exception for ETHNIC
and DOBY. Since we are interested in the prediction of sequences, we now
analyze the predicted clusters obtained with the multinomial model (hence,
for each case we predict the predicted cluster, Ĉ). In Table 6a and 6b we
analyze the cross-tabulation between the clusters obtained with Ward’s al-
gorithm and their prediction, and report some association measures.

Table 6(a) Cross-Tabulation of (C, bC)

Cluster Prediction

Cluster 1 2 3 4 5 Total

1 63 27 0 46 21 157

2 32 41 1 18 8 100

3 26 5 1 16 8 56

4 37 15 0 69 29 150

5 18 8 0 34 55 115

Total 176 96 2 183 121 578
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Table 6(b) Measures of association between C and bC
Statistic DF Value Prob

Chi-Square 16 143.4173 < .0001

Likelihood Ratio Chi-Square 16 128.4685 < .0001

Mantel-Haenszel Chi-Square 1 56.4233 < .0001

Phi Coefficient 0.4981

Contingency Coefficient 0.4459

Cramer’s V 0.2491

Notice that one of the five cluster (Cluster 3) is almost never actually
predicted with the available sample.

We are now interested in analysing the characteristics of the cluster pre-
dicted using multinomial model, to evaluate if the main characteristics of the
original clusters are reproduced or not. At this aim, in Tables 7–9, we analyze
predicted clusters using the same criteria referred to in the description of the
original clusters.

We observe from Table 7 that there is a consistent decrease in the R2.
By analyzing medoids and the time spent in each state, we observe that
for Cluster 1 and Cluster 2 the more relevant states coincide with those
characterizing the original clusters, even if we lost the information about
the fact that women in Cluster 1 enter a union later as compared to other
clusters. As concerns Cluster 4 and 5 we notice that they are more confused
as compared to the original ones.

Table 7 Distance Within Predicted Clusters

Pred. Cluster: g Wg ng W g

1 5716297.4 176 32478.96

2 1634689.4 96 17028.01

3 279.4 2 139.73

4 6751448.0 183 36893.16

5 3374424.2 121 27887.80

R2 = 0.033

Table 8 Medoids and summary statistics (Pred. clusters)

Pred. Cluster: 1 WM =23863.98 WM =135.5908 WMax
M =309.75

Medoid: N64-W77-WU63

Pred. Cluster: 2 WM =12463.13 WM =129.82427 WMax
M =309.99

Medoid: N106-W58-WU40

Pred. Cluster: 3 WM =139.73 WM =69.864998 WMax
M =139.73

Medoid: N35-W43-WU85-WUC7-UC9-WUC7-WUCC16-UCC2

Pred. Cluster: 4 WM =27807.21 WM =151.95197 WMax
M =339.39

Medoid: N65-W73-WU42-WUC6-UC10-WUC1-UC7

Pred. Cluster: 5 WM =21848.56 WM =180.56661 WMax
M =291.69

Medoid: N66-W61-WU31-WUC6-UC12-UCC5-WUCC10-UCC6-WUCC7
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Table 9 Months (mean) spent in each state

Predicted Cluster
Variable 1 2 3 4 5

N 63.89 84.49 70.00 57.98 54.30

U 3.25 4.33 2.87 3.34

W 63.96 61.51 37.00 55.82 44.78

WU 40.10 27.10 73.00 32.25 24.83

C 1.95 2.00 2.78 5.18

UC 5.42 4.29 4.50 9.60 10.65

WC 2.30 2.20 2.09 1.45

WUC 7.54 5.04 10.50 8.47 6.66

CC 0.61 0.08 0.74 2.26

UCC 5.81 4.945 1.00 9.75 18.69

WCC 0.26 0.49 0.70 1.20

WUCC 5.41 4.06 8.00 9.12 8.93

CCC 0.50 1.11 2.49

UCCC 2.04 2.1563 8.05 13.43

WCCC 0.29 0.36

WUCCC 1.43 0.80 2.35 5.44

The main results of this exercise show that the predicted clusters may
differ from the original ones, and that when adopting this two–step procedure
attention must be paid not only to the significance of parameters and of
the model but also to the description of the predicted clusters. In general,
the use of the multinomial logit two-step approach may lead to predicted
clusters which do not “reproduce” the characteristics of the original ones. We
think that this may be depend upon the fact that a “good” cluster solution
(homogeneous clusters) is not necessarily a response which can be satisfactory
predicted.

Hence, a first conclusion of this paper is that a great caution has to be
used in the analysis of what we are going to predict using multinomial logit
models.

5 A new algorithm for predicting sequences

In this section we introduce a new agglomerative hierarchical clustering al-
gorithm, which takes explicitly into account the fact that cluster analysis is
not the primary aim of analysis but, rather, constitutes an intermediate step.
This algorithm is tailored for analyses in which the real aim is to obtain a
prediction of the sequences or, as an alternative, of a proper simplification
of them. This approach can be applied when the explanatory variables are
qualitative.

To do this, we start considering what we call “predictable clusters”. Please
recall that our aim is to predict the response S on the basis of a set of
covariates, X1, . . . , XQ. Consider now the vector of covariates, X.
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In the particular case when all the covariates are qualitative, the number
of realization of X will possibly be lower than the number of sequences, N .
Let now Sx be the set of sequences relative to individuals characterized by
a given vector of covariates, x. Clusters of sequences obtained in this way
are the clusters which can be predicted at best on the basis of the available
explanatory structure. Let now CK∗ be the qualitative variable indicating
cluster–membership corresponding to this partition, and let X∗ indicate the
univariate qualitative variable obtained by compounding the categories of the
covariates (i.e.,X∗ is the qualitative variable corresponding to the realizations
of vector of covariates X). K∗ indicates the number of clusters in the initial
partition and, by definition, it coincides with the number of categories of X∗.

The initial partition CK∗ can now be evaluated from two different points
of view.

Remaining in logic described in the previous section, we can evaluate
the within–groups heterogeneity characterizing the partition, W(CK∗) (see
equation (3)). The quality of the initial partition can be evaluated by referring
to the R2–type measure:

R2(CK∗) = 1− W(CK∗)
T

,

T indicating the heterogeneity within the whole sample as in (1).
Remember from the Section 3 that, following this logic, the criterion to

evaluate the passage from a K–clusters partition CK , to a (K − 1)–clusters
partition, CK−1 is:

∆R(CG, CG−1) = W(CG−1)−W(CG). (5)

Hence the clusters to be joined at each step are selected so as to minimize
∆R(CG, CG−1) , i.e., by minimizing ∆R2 = R2(CK)−R2(CK−1). In particular,
∆R can be considered as the distance between two clusters (the less distant
clusters are joined).

Notice that, should we follow this agglomerative procedure, the explana-
tory structure would not be taken into account in building clusters, except
at the initial step (the initial partition).

As it was mentioned before, the initial partition can also be evaluated
from a second point of view. In particular, the association between the initial
partition and the compounded explanatory variable X∗ can be measured by
means of the likelihood-ratio statistic G2:

G2(CK∗ , X∗) = 2
K∗∑

k=1

K∗∑

j=1

mkj log
mkj ·N
nknj

,

where mkj is the number of cases in the k–th cluster characterized by the
j–th category of X∗ and nk and nj are the marginal absolute frequencies.

Consider now a K–clusters partition CK , and suppose that (K−1) clusters
have to be obtained by joining two clusters into a single one. Suppose that two



Predicting Work and Family Trajectories 13

clusters, say Cw and Cz are joined to form cluster Cwz. In the association–
logic, we are substantially collapsing two rows of the two-way contingency
table displaying the distribution of the N cases according to the categorical
variables, X∗ and CK . Let G2(CK−1, X

∗) denote the G2 of the new table, and
let G2(Cwz, X∗) denote the G2 characterizing the sub-table constituted by
the two joined rows. It can be easily shown that:

G2(CK , X∗) = G2(CK−1, X
∗) +G2(Cwz, X∗)

Hence, as the number of clusters decreases, the association between the
partition and the explanatory structure decreases. In particular, it is:

∆G(CG, CG−1) = G2(CK , X∗)−G2(CK−1, X
∗) = G2(Cwz, X∗) (6)

By referring to the G2–logic, the two clusters to be joined should be
selected by minimizing ∆G. Notice that, should we follow only this agglom-
erative procedure, the heterogeneity within clusters, at the basis of the R2

approach, would not be taken into account in building clusters.
Now notice that in the two–step approach followed by McVicar and Anyandike-

Danes (2001), clusters are firstly determined under a purely R2–logic. Subse-
quently we refer to the explanatory variables to predict cluster membership
via multinomial logit models, following, in a sense, a G2–logic.

Our idea is to obtain clusters by explicitly taking into account that in the
second step of analysis they have to be predicted on the basis of a multinomial
logit model. Hence also the G2 logic should be taken into account in the
formation of clusters. To do this, we consider as a starting point the partition
CK∗ , induced by the (compounded) categories of the explanatory variables.
Remember that this partition is the one which can be predicted at best on
the basis of the available explanatory structure.

At each step of the procedure, the clusters to be joined are selected by
referring either to the R2 and to the G2 logic. This is done by considering
the average of ∆R and ∆G (more precisely both the ∆’s are adjusted so as
to have the same relative importance, since they have different range). The
average is taken as a measure of the distance between two clusters. Of course
one can decide to give more or less weigth to one of the component1.

In Table 10–12 we describe the clusters obtained using our algorithm.
Notice from Table 10 that the R2 of the obtained partition is lower than that
characterising Ward’s solution (which is only R2–oriented).

1 It is maybe worthwhile to point out that it is very simple to update the dissimilar-
ity matrix once two clusters are joined so the algorithm is not more computational
expensive than Ward’s algorithm.
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Table 10 Distance Within Clusters

Cluster: g Wg ng W g

1 784203.26 77 10184.458

2 8188211.00 199 41146.789

3 960138.12 81 11853.557

4 1195221.80 100 11952.218

5 3115593.60 121 25748.707

R2 = 0.15

Table 11 Medoids and summary statistics

Cluster: 1 WM =7336.92 WM =95.28 WMax
M =255.55

Medoid: N77-W40-WU87

Cluster: 2 WM =32306.32 WM =162.34 WMax
M =339.21

Medoid: N66-W61-WU31-WUC6-UC12-UCC5-WUCC10-UCC6-WUCC7

Cluster: 3 WM =8468.25 WM =104.55 WMax
M =295.95

Medoid: N107-W58-WU39

Cluster: 4 WM =8699.74 WM =87.00 WMax
M =211.79

Medoid: N61-W107-WU36

Cluster: 5 WM =20782.38 WM =171.75 WMax
M =309.47

Medoid: N40-W42-WU27-WUC6-UC22-UCC5-WUCC6-UCC21-WUCC18-UCC2-WUCC15

Table 12 Months (mean) spent in each state

Cluster
Variable 1 2 3 4 5

N 68.82 55.32 102.39 60.52 49.78

U 9.16 2.42 2.27 1.80 3.03

W 38.57 60.85 49.77 101.30 29.99

WU 76.03 26.33 27.36 34.79 15.89

C 7.13 0.38 0.02 1.81

UC 4.25 10.78 3.47 1.48 12.55

WC 4.33 0.93 1.97

WUC 6.12 11.89 3.91 1.67 7.16

CC 1.29 0.10 0.06 2.10

UCC 0.54 6.79 7.80 1.99 27.44

WCC 0.45 0.16 0.12 2.09

WUCC 0.52 6.31 3.89 0.25 20.44

CCC 0.90 3.10

UCCC 4.55 0.52 22.45

WCCC 0.43 0.02 0.08

WUCCC 4.22 1.02 4.09

For the sake of simplicity, we interpret these clusters in reference to the
ones found using Ward’s algorithm. Cluster 1 is a cluster that resembles
Cluster 3 in Table 4, with a combination of work and family without a key
role of childbearing. The WU state is the most frequent on average and also
for the medoid. Cluster 2 and Cluster 3 present combination trajectories,
with lower education for Cluster 2, and the presence of children. The medoid
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of Cluster 2 has family-related interruptions of work (similarly to Cluster 4
in Table 4). For what concerns Cluster 4, this is clearly a cluster of work-
oriented trajectories, with a clear prevalence of the W state, similar to Cluster
1 in Table 4. Cluster 5 includes the most family-oriented trajectories, with
around 50 months spent in either UCC or UCCC – this is similar to Cluster
5 obtained using Ward’s algorithm, although a higher level of labor force
participation is visible from Table 13 or from the medoid woman in Table 12.

A multinomial logit model was applied to explain cluster membership.
Notice that this model can not be directly compared to the one relative to
Ward’s solution, since the response variable is different. Nevertheless, from
Table 13 it is possible to notice an improvement in the significance of the
explanatory variables (they are now all significant and the significance level
is increased) as well as in the global measures (Likelihood Ratio and Pseudo
R2). Results in Tables 14a–14b emphasize the higher association between
clusters and their predictors.

Table 13 LR Results

Source DF LR (chi2) Pr >chi2

Intercept 4 11.54 0.0211

LCLASSMU 4 16.36 0.0026

LCLASSDA 4 50.40 0.0000

ETHNIC 4 14.79 0.0052

BOTHPAR1 4 39.72 0.0000

REGION 68 186.44 0.0000

DOBY 32 92.85 0.0000

LR(full) 116 411.85 0.0000

Pseudo R2 0.2311

Table 14(a) Cross-Tabulation of (C, bC)

Cluster Prediction

Cluster 1 2 3 4 5 Total

1 19 19 11 13 15 77

2 6 153 10 9 21 199

3 13 20 32 10 6 81

4 11 30 14 32 13 100

5 8 36 6 3 68 121

Total 57 258 73 67 123 578

Table 14(b) Measures of association between C and bC
Statistic DF Value Prob

Chi-Square 16 309.6489 < .0001

Likelihood Ratio Chi-Square 16 269.6728 < .0001

Mantel-Haenszel Chi-Square 1 107.3682 < .0001

Phi Coefficient 0.7319

Contingency Coefficient 0.5906

Cramer’s V 0.3660
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Turning now attention to the predicted clusters, we observe from Table 15
that the increase in the R2 is not so significant (it was 0.033 for the predictors
of Ward’s clusters).

Table 15 Distance Within Predicted Clusters

Pred. Cluster: g Wg ng W g

1 566635.62 57 9940.97

2 13655021.00 258 52926.44

3 977891.22 73 13395.77

4 751760.94 67 11220.31

5 3353344.3 123 27262.96

R2 = 0.039

Table 16 Medoids and summary statistics (Pred. clusters)

Pred. Cluster: 1 WM =7655.07 WM =134.30 WMax
M =267.96

Medoid: N64-W77-WU63

Pred. Cluster: 2 WM =40658.07 WM =157.59 WMax
M =339.96

Medoid: N63-W84-WU57

Pred. Cluster: 3 WM =9872.44 WM =135.24 WMax
M =309.99

Medoid: N106-W58-WU40

Pred. Cluster: 4 WM =8122.01 WM =121.22 WMax
M =305.79

Medoid: N69-W83-WU52

Pred. Cluster: 5 WM =21237.22 WM =172.66 WMax
M =291.69

Medoid: N66-W61-WU31-WUC6-UC12-UCC5-WUCC10-UCC6-WUCC7

Table 17 Months (mean) spent in each state

Predicted Cluster
Variable 1 2 3 4 5

N 77.05 58.69 81.75 65.57 55.14

U 4.39 2.93 4.96 2.03 3.36

W 55.56 60.65 55.51 68.10 44.23

WU 38.58 31.25 27.82 42.82 28.86

C 2.39 3.65 3.14 0.12 2.89

UC 5.65 8.77 4.85 4.48 9.61

WC 0.96 2.67 2.51 2.02

WUC 6.17 8.94 6.68 4.42 6.07

CC 0.23 0.67 0.40 0.13 2.45

UCC 5.95 8.81 6.89 5.92 16.54

WCC 0.70 0.80 0.16 0.30 0.72

WUCC 6.37 8.03 3.97 2.66 9.79

CCC 0.68 1.26 2.33

UCCC 5.05 3.75 3.16 15.26

WCCC 0.21 0.20 0.03 0.22

WUCCC 2.21 0.14 4.25 4.49

The analysis of the medoids and of the relative importance of each state,
in terms of months spent in each of them, evidence a higher capability of the
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predicted cluster to reproduce the original clusters. The only exception is for
Cluster 2, which is characterized by a medoid quite different from the one
characterizing the original cluster. Nevertheless, by analyzing Table 17 we
can observe that the relevant states are the same, even if their importance is
lower (and this explains the difference in the medoids).

The obtained results evidence that, differently from what happens with
Ward’s clusters, “our” clusters are all predicted by the multinomial logit
model (observe also that the misclassification rate is lower for our clusters).
Moreover, the explanatory variables are more significant. In a sense, we are
“trying to exploit at best” the predictive capability of the explanatory vari-
ables.

We can now draw some general conclusions. As a first consideration, we
can say that the the cluster solution provided by our combined agglomerative
criterion is worse than the one obtained by applying Ward’s algorithm in
terms of R2. This means that the latter algorithm leads to clusters which
are more homogeneous. Nevertheless, the main point here is that if the aim
of analysis is to predict sequences, the R2 criterion can not be the only one
referred to. Actually, we have to evaluate if the best R2 partition is also a
predictable one.

In this sense, our algorithm favours a partition which is maybe less homo-
geneous but which can be predicted better. This is particularly important in
cases when the multinomial model leads to predictors which do not reproduce
in a satisfactory way the R2–best clusters.

This is particularly relevant when conclusions drawn on the basis of the
results of multinomial logit models have to be referred to by policy makers.
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