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ABSTRACT 

In this paper I explore the formal relationship between period and cohort mortality, 
focusing on a comparison of measures of mean life span.  I consider not only the usual measures 
(life expectancy at birth for time periods and birth cohorts) but also some alternative measures 
that have been proposed recently. 

I examine (and reject) the claim made by Bongaarts and Feeney that the level of period 
0e  is distorted, or biased, due to changes in the timing of mortality.  I show that their proposed 

alternative measure, called “tempo-adjusted” life expectancy, is exactly equivalent in its 
generalized form to a measure proposed by both Brouard and Guillot, the cross-sectional  
average length of life (or CAL), which substitutes cohort survival probabilities for their period 
counterparts in the calculation of mean life span.  I conclude that this measure does not in any 
sense correct for a distortion in period life expectancy at birth, but rather offers an alternative 
measure of mean life span that is approximately equal to two analytically interesting quantities:  
1) the mean age at death in a given year for a hypothetical population subject to observed 
historical mortality conditions but with a constant annual number of births; and 2) the mean age 
at death, λ , for a cohort born λ  years ago. 

However, I also observe that the trend in period 0e  does indeed offer a biased depiction 
of the pace of change in mean life span from cohort to cohort.  Holding other factors constant, an 
historical increase in life expectancy at birth is somewhat faster when viewed from the 
perspective of cohorts (i.e., year of birth) than from the perspective of periods (i.e., year of 
death). 
 
                                                 
∗ The title differs from what appears in the program for this meeting because the content originally intended for this 
paper was broadened and then split into two parts.  A companion paper, “On the relationship between period and 
cohort fertility,” is in preparation. 
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1. Introduction 

A classic problem in formal demography is how to define summary measures of 
demographic events for time periods that correspond in some meaningful way to the lived 
experience of actual cohorts.  Although such period measures may not be equivalent to the 
analogous measure for any particular cohort, they should nevertheless represent the lifetime 
experience of a hypothetical cohort that is subject throughout its life to currently observed 
demographic conditions.  The question, of course, is how to define the concept of current 
conditions, especially when such conditions are changing.  For example, several authors have 
pointed out that under certain conditions the standard measure of lifetime completed fertility, the 
total fertility rate (TFR), misrepresents the average number of births that a woman would bear 
over her lifetime (Hajnal, 1947; Ryder, 1964; Bongaarts and Feeney, 1998).  Since the problem 
is caused by changes from year to year in the timing of fertility as a function of age, this 
phenomenon is now commonly referred to as tempo distortion, or bias. 

In the case of fertility, the existence of such a distortion is widely acknowledged, even 
though there are substantial differences of opinion about how best to adjust the TFR to remove 
such bias (Schoen, 2004; Wilmoth, 2005).  In the case of mortality, however, the recent claim by 
Bongaarts and Feeney (2002, 2003) of a similar bias affecting period life expectancy at birth, 0e , 
has not found wide acceptance.  Without doubt, such skepticism derives in part from the 
dissimilarity of the two examples, since the TFR measures the number of births over the life 
course, whereas 0e  depicts the average age at death.  This difference recalls Ryder’s emphasis 
on the fundamental distinction between the quantum and the tempo of demographic events 
(Ryder, 1978). 

The recent discussion of these topics has revealed a pressing need to clarify the meaning 
of various summary measures of average longevity in a population.  Therefore, in this paper I 
explore the formal relationship between period and cohort mortality, with a particular emphasis 
on the concept of mean life span.  I consider not only the usual measures (life expectancy at birth 
for periods and cohorts) but also some alternative measures that have been proposed recently. 

I examine (and reject) the assertion that the level of period 0e  is distorted, or biased, due 
to changes in the timing of mortality.  I show that the alternative measure proposed by Bongaarts 
and Feeney, called “tempo-adjusted” life expectancy, is exactly equivalent in its generalized 
form to a measure proposed by both Brouard (1986) and Guillot (2003), known as the cross-
sectional average length of life (or CAL), which substitutes cohort probabilities of survival for 
their period counterparts in the calculation of mean life span.  I conclude that this measure does 
not in any sense correct for a distortion in period life expectancy at birth, but rather offers an 
alternative measure of mean life span that is approximately equal to two analytically interesting 
quantities:  1) the mean age at death in a given year for a hypothetical population subject to 
observed historical mortality conditions but with a constant annual number of births; and 2) the 
mean age at death, λ , for a cohort born λ  years ago. 
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However, I also observe that the trend in period 0e  does indeed offer a biased depiction 
of the pace of change in mean life span from cohort to cohort.  Holding other factors constant, an 
historical increase in life expectancy at birth is somewhat faster when viewed from the 
perspective of cohorts (i.e., year of birth) than from the perspective of periods (i.e., year of 
death). 

2. Overview and Fundamental Concepts 

Demographic events mark major life course transitions (e.g., birth, marriage, fertility, 
migration, retirement, widowhood, death).  Their likelihood of occurrence within some time 
interval is often described using rates (and/or conditional probabilities), whose specificity may 
vary as a function of age, time, sex, and other individual characteristics.  Such rates are often 
used to calculate a variety of summary measures that depict the intensity and/or timing of such 
events over the life course.  Without doubt, the two most common of these measures are life 
expectancy at birth, 0e , and the total fertility rate (TFR). 

An overview of demographic summary measures must begin with certain fundamental 
concepts, including three important dichotomies:  (a) cohorts vs. period; (b) quantum vs. tempo; 
and (c) population dynamics vs. synthetic cohorts.  In addition to these three distinctions, we 
need to understand the phenomenon of partial (or excess) quantum, which affects the period TFR 
(and all measures of quantum) whenever the timing of fertility (or other event) is changing over 
time.  To address these and other issues in this paper, I describe a new class of models that can 
be used to explore mortality (and other demographic) trends based on simple assumptions about 
changes in the age distribution of events, rather than the age pattern of risk. 

2.1 Cohorts vs. periods 
Cohorts and periods are two different ways of reckoning time used for the analysis of 

demographic events.  A cohort is an actual group of persons who experience a major life event 
around the same time.  For example, birth cohorts are composed of individuals who are born in 
the same year.  Cohort life expectancy at birth is the observed average age at death for this group 
(ignoring migration).  In the same context, a period is a time interval (e.g., year, decade) and is 
associated with a synthetic cohort, which is an imaginary group of people who experience, 
hypothetically, the demographic conditions of that period throughout life.  Thus, period life 
expectancy at birth is the expected average age at death for a synthetic cohort that experiences 
the mortality risks of that time (as reflected in age-specific death rates) from birth onward. 

2.2 Quantum vs. tempo 
In general, quantum refers to the intensity (or level, or frequency) with which some 

demographic event occurs in a population.  Quantum can be described as a function of age  
(e.g., age-specific rates) or summarized over the entire life course (e.g., the lifetime count or 
probability of an event).  Age-specific measures of quantum always have the number of events in 
the numerator.  In the case of mortality, these include death counts, probabilities of death or 
survival, and death rates.  In contrast, tempo refers to the timing of a demographic event over the 
life course.  Measures of tempo are expressed in units of time (or age) and usually depict the 
duration until an event’s occurrence.  The most common example is life expectancy at birth, but 
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other measures of mortality tempo include percentiles of the distribution of age at death (e.g., 
median age at death) and person-years of survival (within some interval of time and/or age). 

2.3 Population dynamics vs. synthetic cohorts 
There are two classes of period measures used for summarizing the demographic events 

of a given time interval:  (a) those that describe population dynamics, and (b) those that depict 
the hypothetical experience of a synthetic cohort.  These two types of measures serve different 
purposes, and a measure that is appropriate in one case may be inappropriate in the other.  For 
example, the period total fertility rate (TFR), which equals the sum of observed age-specific 
fertility rates for a given period, depicts accurately the average contribution to population change 
attributable to the current fertility of woman in the reproductive age range (Calot, 2001). 

However, as a measure of lifetime fertility for a synthetic cohort, the TFR has at least two 
inherent flaws.  First, as discussed in the following section, it is affected by the phenomenon of 
partial (or excess) quantum whenever there are changes in the timing of fertility as a function of 
age.  This problem, often called “tempo distortion” or “bias,” can be circumvented by a small 
adjustment applied to age-specific fertility rates, which has the effect of replacing (or removing) 
the partial (or excess) quantum caused by changes in fertility tempo.  Second, observed age-
specific fertility rates reflect past as well as current fertility patterns, since they depend on the 
distribution of women by parity at each age.  This problem can be avoided by computing an 
alternative measure of period total fertility based on parity transition rates within a multi-state 
framework (Wilmoth, 2005). 

Thus, even though it is usually presented as a measure of lifetime fertility for a synthetic 
cohort, it is more appropriate to interpret the TFR as a measure of population dynamics.1  If we 
desire a measure of total fertility that depicts the lifetime experience of a synthetic cohort based 
only on current fertility conditions, then we must address both of the problems mentioned above.  
These arguments are elaborated in a companion paper, which makes the case for replacing the 
traditional TFR by a pair of period measures:  (a) the net reproduction rate (NRR) for the analysis 
of population dynamics, and (b) a full-quantum (or tempo-adjusted) multi-state TFR to represent 
the lifetime reproduction of a synthetic cohort. 

In the case of mortality as well, some measures of mean life span are useful mostly for 
the analysis of population dynamics.  For example, the cross-sectional average length of life 
(CAL) depicts the size and age distribution of a population at a point in time given its past 
mortality trends but assuming (hypothetically) a constant annual stream of births (Guillot, 2003).  
As shown here, CAL is also approximately equal to certain measures of mean life span for the 
population in question.  For example, it is quite similar in form to the mean age at death that 
would be observed in a given time period for a population with identical mortality patterns and a 
constant number of births per year.  In both these cases, however, CAL is describing population 
dynamics, not the life course of a synthetic cohort based exclusively on the mortality conditions 
of the given period.  That purpose is fulfilled uniquely by the period life expectancy at birth, 0e , 
which gives the expected mean age at death implied by the observed death rates of that time. 

                                                 
1 The TFR is often interpreted (at least implicitly) as a proxy for the net reproduction rate (NRR).  For example, since 
population replacement in low-mortality populations requires a TFR of about 2.1 children per woman, a convenient 
approximation in such situations is that 1.2TFRNRR ≈ . 
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In general, measures of the average age of an event over the life course have these two 
common forms:  (a) observed mean age in the population itself assuming a constant birth stream; 
and (b) expected mean age in a synthetic cohort assuming that current age-specific transition 
rates are experienced over a lifetime.  Some confusion results from the fact that different 
traditions have existed in fertility and mortality analysis concerning the appropriate definition for 
the mean age of the event.  Perhaps because a central focus of fertility studies has been the role 
of reproduction in population dynamics, the definition of “average age at birth” has followed the 
concept of an observed mean age.  In contrast, it was quite sensible for life expectancy at birth to 
reflect the concept of an expected mean age, since mortality studies have been framed in terms of 
risk reduction and abstract notions of quality of life, not population dynamics.2 

2.4 Causes and consequences of partial (or excess) quantum 
Many demographic events, like death, occur at various ages for members of the same 

cohort.  An associated probability distribution depicts the timing of such events as a function of 
age, and thus also in relation to the time periods in which they occur.  During a given time 
period, each living cohort undergoes some fraction of its total lifetime experience of the event in 
question, and the total number of events observed during that period is a composite of these 
fractional segments of cohort lifetimes. 

If the age distribution of events is identical from cohort to cohort, a period cross-section 
of these fractional segments sums to one, and therefore the collection of events within the period 
can be said to represent the equivalent of a complete cohort lifetime.  However, whenever there 
are changes in the distribution of events by age for successive cohorts, a period cross-section of 
cohort probability distributions typically does not sum to one, and thus period events generally 
misrepresent the equivalent of a complete cohort lifetime.3  Thus, a delay in the timing of events 
from cohort to cohort produces a phenomenon of partial quantum, whereas an acceleration of 
timing results in excess quantum during the period in question.  (To simplify the exposition here, 
I will often consider only the case of tempo delay and partial quantum, since the causes and 
consequences of excess quantum are identical, though always in the opposite direction.) 

The phenomenon of partial (or excess) quantum is the source of a “tempo distortion,” or 
“bias,” that affects measures of lifetime quantum, like the TFR.  This distortion can be easily 
eliminated by adjusting age-specific fertility rates in an appropriate fashion (Wilmoth, 2005).  
However, as noted earlier, this distortion is relevant only in situations where the TFR is 
interpreted as measure of lifetime fertility for a synthetic cohort.  When the TFR is employed as a 
measure of population dynamics, the partial (or excess) quantum caused by changes in fertility 
tempo is a desirable outcome.  Adjusting the measure in such cases to remove tempo effects 
creates a bias where none existed before. 

The role of these factors in the analysis of quantum measures, like the TFR, is relatively 
straightforward, owing to the fact that the model of a synthetic cohort is relatively simple in that 
case.  In order to represent the lifetime quantum of an event, such as total fertility, demographers 
                                                 
2 Admittedly, the use of “observed” mean age is not entirely correct in this context, since I am referring to a 
hypothetical situation in which births are assumed to be constant over time.  However, for lack of a better idea  
about how to label this crucial distinction (between “observed” and “expected” mean ages), I have retained this 
terminology for the time being. 
3 A sum of one in this case could occur only by coincidence, if negative and positive factors cancelled out, but such 
an occurrence seems extremely unlikely. 
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have typically created a synthetic cohort that is not subject to mortality or other forms of 
attrition, and thus the base population that accumulates events (e.g., births) over the life course is 
constant.  For this reason, adjusting for the effects of partial quantum (or tempo delay) is a 
simple matter of replacing the fraction of events for each cohort that have been postponed from 
the time period in question into the future. 

In contrast, tempo measures and their associated synthetic cohorts have a more 
complicated mathematical structure due to the phenomenon of attrition, which affects the base 
population (e.g., number of survivors) that is eligible to experience a given event (e.g., death).  In 
such cases, adjusting for tempo delay (or partial quantum) has a dual effect.  For a given base 
population, it restores a fraction of events that have been postponed into the future.  However, it 
also alters the base population itself at each age.  Whereas the first effect has a relatively minor 
effect on measures of mean age (e.g., life expectancy at birth), the latter effect is quite significant 
and fundamentally alters the nature of the measure.  In fact, as I show here, tempo adjustment 
has the effect of converting a period survival probability (i.e., the probability of survival to age x 
within a period life table) into an analogous cohort survival probability (i.e., the probability of 
survival to age x for the cohort born x years ago).  In doing so, it converts period 0e  into CAL, 
and thus fundamentally alters the nature of the measure (recall the earlier discussion of synthetic 
cohorts vs. population dynamics). 

In short, adjusting for tempo change in the case of a tempo measure has the effect of 
removing historical changes in the quantity being measured.  Tempo adjustment in this case 
converts a period measure based on a synthetic cohort into a cross-sectional measure that reflects 
the past experiences of cohorts.  As noted earlier, the primary use for CAL is the analysis of 
population dynamics.  Differences between CAL and period 0e  do not suggest that the latter 
measure is “distorted” in any sense.  Rather, the two measures differ because they describe 
different things. 

2.5 Models of mortality change over time 
[This section not finished yet] 

This project uses a new class of models to gain insights into period-cohort relationships.  
Previously, most models of mortality change over age and time have been specified in terms of 
trends in death rates.  Here, changes in mortality are specified in terms of shifting distributions of 
deaths by age.  Rate models vs. percentile models. 
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3. Mortality Functions and Basic Relationships 

3.1 Single Cohort Model 
For a single cohort (real or synthetic), the usual formulas for computing life expectancy 

at birth are the following: 
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where )()()()( xxxx dx
d µφ ll =−=  is the probability density function, describing the distribution 

of deaths by age in the cohort; )(ln)()()( xxxx dx
d
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d lll −=−=µ  is the death rate at age x; 
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is the probability of survival from birth until exact age x. 

Although they have different forms, all three of the above formulas yield the same value 
for the mean age at death in a cohort.  The difference between the first two formulas is trivial, 
since )()()( xxx µφ l= .  Both of these formulas depict life expectancy at birth as an average age 
at death, or as an expected value associated with the probability distribution.  However, the last 
formula is different in both form and substance; it suggests an alternative interpretation of mean 
life span as the average accumulation of person-years lived by members of the cohort. 

It is also possible to depict life expectancy at birth as an integral with respect to the 
probability of dying.  Such calculations are closely related to percentiles of the distribution, 

)(~ πa , which are defined as follows: 

 xa =π)(~   such that  )(1)( xx l−=Φ=π  ,  (2) 

where ∫=Φ
x

daax
0

)()( φ  is the distribution (or cumulative probability) function for ages at death 

in the cohort.  Thus, )(~ πa  is an age, x, such that the proportion of total deaths (over the cohort’s 
lifetime) occurring before age x is π .  Thus, the derivative of π  with respect to age, x, equals the 
density function at that age: 

 )(xdx
d φ=π  .  (3) 

Substituting )(~ πa  in place of x, the relationships described in equation 2 can also be 
written as follows: 

 ))(~( πΦ=π a    and   ))(~( πφ=π adx
d . (4) 

Moreover, substituting )(~ π= ax  and/or dxxd )(φ=π  in equation 1 yields the following 
alternative forms for life expectancy at birth: 
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Thus, if we assign equal weight to arbitrarily small intervals of age, each containing an equal 
share of the lifetime probability of death (totaling one, of course), then life expectancy at birth 
equals the (weighted) average of either the mean age or the reciprocal of the death rate within 
each interval. 

3.2 Standard Period-Cohort Model 
The above formulas describe the calculation of life expectancy at birth for just one 

cohort, which could be either an actual birth cohort or a synthetic cohort derived from the 
collective mortality experience of cohorts alive during some time period.  Using long series of 
historical data (mostly from vital statistics and census data), a common problem is to construct 
series of annual life tables for both periods and cohorts.  To accomplish this goal, it is necessary 
to make some assumption about the link between period and cohort mortality, so that the two 
sets of tables are related in some logical and consistent manner. 

The traditional manner of defining this link has been to equate period and cohort 
mortality in terms of their age-specific death rates.  Thus, we typically begin by assuming that 
the death rates for a period life table should be derived directly from observed cohort death rates.  
In continuous age and time, this relationship can be expressed as follows: 

 ),(),(),(),( τµµµµ xxtxtxtx ccp =−==  ,  (6) 

where xt −=τ .  Thus, by definition, the period death rate at age x and time t, ),(),( txtx pµµ = , 
equals ),(),( τµµ xxtx cc =− , the death rate at age x for the cohort born x years ago at time τ .  
Given this assumption, a complete series of historical life tables for both periods and cohorts is 
fully defined by the surface of age-specific rates expressed as functions of age and time.4 

For example, life expectancy at birth for a given period t can be computed using the 
above equations.  Written using a complete notation, the standard equations for period life 
expectancy at birth are as follows: 

                                                 
4 The equations given here refer to the death rate at a point of age and time, (x,t), which simplifies the task of 
defining the link between period and cohort mortality.  In practice, period and cohort mortality must be defined and 
measured over some time interval, such as a single calendar year.  In such situations, one simple approach is merely 
to equate period rates to cohort rates, or vice versa, without further manipulation.  However, the rates that result 
from such a procedure are less precise in terms of their temporal specificity than what is obtained by constructing 
different sets of overlapping rates for periods and cohorts.  Although derived from the same data, accurate mortality 
rates for periods and cohorts over discrete intervals are estimated by altering slightly the configuration of age and 
time used to organize the raw data (annual death counts, and estimates of exposure-to-risk in person-years), so that 
each set of rates corresponds to exact period or cohort age intervals.  For purposes of the present discussion, such 
complications can safely be ignored, since the mathematical development pursued here is expressed entirely in terms 
of continuous age and time. 
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where ),(),(),(),( txtxtxtx pppdx
d

p µφ ll =−=  gives the probability distribution of ages at death 
for the synthetic cohort of period t; ),(ln),(),(),(),( txtxtxtxtx pdx

d
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survival from birth until exact age x. 

Similarly, life expectancy at birth for a cohort born at time τ  can be computed as 
follows: 
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until exact age x. 

3.3 Cohort Distributions of Age at Death 

Let us also define percentiles of the distribution of age at death for each cohort as 
follows: 

 xac =),(~ τπ    such that   ),(1),( ττπ xx cc l−=Φ=  ,  (9) 

where ∫=Φ
x

cc daax
0

),(),( τφτ  is the distribution (or cumulative probability) function for age at 

death in the cohort born at time τ .  An important quantity in this discussion will be speed of 
change in these percentiles over time.  Define ),( τxsc  to be the pace of change (from cohort to 
cohort) in the percentile of ages at death observed at age x for the cohort born at time τ .  Thus, 
by definition 

 ),(~),( τπτ τ cd
d

c axs =  ,  (10) 

where ),( τπ xcΦ=  is fixed. 
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In general, such quantities, known as “cohort percentile slopes,” are useful for describing 
the relationship between period and cohort mortality.  It is shown in the Appendix that a cohort 
percentile slope has the following relationship to the other mortality functions described above: 
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Thus, the cohort percentile slope at age x equals the ratio (either positive or negative) of some 
measure of cumulative mortality or survival, divided by an associated measure of age-specific 
mortality. 

Using the first relationship of equation 11, it is possible to derive simple expressions for 
the derivatives of ),( τxcΦ  in three directions: 

 ),(),(),( τφτττ xxsx cccd
d −=Φ  (horizontal)  (12) 

 ),(),( τφτ xx ccdx
d =Φ  (diagonal)  (13) 

 ( ) ),(),(1),( xtxxtxsxtx cccdx
d −−+=−Φ φ  (vertical)  (14) 

As illustrated here in Figure 1, the labels, “horizontal,” “diagonal,” and “vertical,” refer to 
directions of change in a Lexis diagram drawn with time (of death) along the x-axis and age 
along the y-axis (thus, cohort lifetimes are represented by diagonal lines).  The horizontal and 
diagonal derivatives are obtained from the earlier equation for the percentile slope and from the 
definition of ),( τxcΦ  in terms of ),( τφ xc .  The vertical derivative follows from the fact that the 
derivative in the diagonal direction equals the sum of the other two derivatives. 

The derivative of ),( τxcΦ  in the vertical direction is important because it illustrates that 
the cross-sectional sum of cohort probability distributions does not in general equal one.  For 
example, if 0),( >− xtxsc  for all x, it follows that 

 ( ) 1),(),(1),(
00

=−−+<− ∫∫
∞∞

dxxtxxtxsdxxtx ccc φφ  .  (15) 

In this example, since cohort percentile slopes at time t are positive, the timing of death is being 
delayed or postponed for each successive cohort.  This equation illustrates the phenomenon of 
partial quantum, which occurs whenever the age distribution of events (deaths) is shifting 
upward over time.  Conversely, if the distribution of deaths is shifting uniformly toward younger 
ages (thus, the timing of death is being advanced or accelerated), then ),( xtxsc −  would be 
negative for all x at time t, and the above sum would be greater than unity (i.e., excess quantum).  
Let us refer to ),( xtxc −φ  as a cross-sectional cohort probability density function. 

Assuming that 1),( −>− xtxsc  for all x and t,5 it is possible to define the following 
probability density function: 
                                                 
5 It is theoretically possible for cohort percentiles to have slopes that are less that -1, and their reality has been 
confirmed by empirical observation.  For expediency, this somewhat unusual situation will be not covered in this 
version of the present paper, as we assume that 1),( −>− xtxsc .  Note, however, that all formulas given here remain 
correct even when cohort percentile slopes dip below -1.  Thus, it is merely the interpretation of the quantities, 

),(* txφ  and ),(* txµ , as adjusted density functions and adjusted death rates that depends on this assumption. 



Wilmoth  Period and Cohort Mortality 

- 10 - 

 ( )
),(1

),(),(),(1),(*
xtxr

xtxxtxxtxstx
c

c
cc −−

−
=−−+=

φ
φφ  , (16) 

where 
),(1

),(),(
xtxs

xtxsxtxr
c

c
c −+

−
=− , and thus ( ) 1),(1),(1 −−−=−+ xtxrxtxs cc .  This function 

sums to one over the full age range (see equation 15 above), since ),(),( xtxxtxs cc −− φ  replaces 
the missing quantum at age x, assuming 0),( >− xtxsc .6  Thus, ),(* txφ  is an adjusted cross-
sectional cohort probability density function. 

One important feature of the adjusted function, ),(* txφ , is its relationship to the cross-
sectional cohort cumulative probability and survival functions, ),( xtxc −Φ  and ),( xtxc −l , 
respectively.  In the following equation, note that the first integral derives from the definition of 

cΦ , whereas the second integral follows from equation 14: 

 ∫∫ =−=−Φ
xx

cc datadaxtaxtx
00

),(*),(),( φφ . (17) 

Likewise, it follows that: 

 ∫∫
∞∞

=−=−Φ−=−
xx ccc datadaxtaxtxxtx ),(*),(),(1),( φφl . (18) 

The relationships linking cΦ  and cl  on the one hand, to cφ  and *φ  on the other are illustrated 
here in Figure 2. 

Following a similar logic, let us define adjusted death rates as follows:. 

 ( )
),(1

),(),(),(1),(*
xtxr

txtxxtxstx
c

c −−
=−+=

µµµ . (19) 

The cumulative death rate at age x and time t also has two equivalent forms: 

 ∫∫ =−=−
xx

cc datadaxtaxtxH
00

),(*),(),( µµ  . (20) 

Therefore, the cohort survival probability at age x and time t can be computed using either set of 
death rates: 

 { } { }∫∫ −=−−=−
xx

cc datadaxtaxtx
00

),(*exp),(exp),( µµl  . (21) 

3.4 Alternative Measures of Period Mean Life Span 
Both Brouard (1986) and Guillot (2003) have proposed the “cross-sectional average 

length of life,” a measure known by its acronym, CAL, which I will also call *
0e .  By definition, 

 { } ∫∫ ∫∫
∞∞∞

=−=−==
00 000 ),(*),(*exp),()()(* dxtxxdxdatadxxtxtCALte

x

c φµl . (22) 

                                                 
6 In this discussion we will generally consider the example of cohort percentiles that increase over time, reflecting an 
increase in longevity.  It should be evident in (almost) all cases that a decrease over time is also possible and is 
associated with opposite effects. 
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where ),(* txµ  and ),(* txφ  are defined as before. 

Bongaarts and Feeney (2002, 2003) have proposed a “tempo-adjusted” value of life 
expectancy at birth, which I call 0e′ .  By definition, 

 ∫∫ ∫
∞∞

−
−

=
⎭
⎬
⎫

⎩
⎨
⎧

−
−=′

00 00 )(1
),(

)(1
),(exp)( dx

tr
xtxxdxda

tr
tate

c

cx

c

φµ  , (23) 

where ∫
∞

−=
0

),(*),()( dxtxxtxrtr cc φ  is the (weighted) average value of ),( xtxrc − .7 

The two quantities, 
)(1
),(
tr
ta

c−
µ  and 

)(1
),(

tr
xtx

c

c

−
−φ , are known as “tempo-adjusted” mortality 

functions.  However, as noted also by Feeney (2004), their general form should involve an 
adjustment factor at each age, ( ) 1),(1),(1 −−−=−+ xtxrxtxs cc , reflecting the shift in the cohort 
distribution of deaths observed at that exact age, rather than some average value.  For 
comparison, note the factor of ( ) 1)(1 −− trc  in the definition of )(0 te′ .  Thus, CAL equals the 
generalized form of “tempo-adjusted” life expectancy at birth.  Introducing a factor of 

),(1 xtxsc −+  or ( ) 1),(1 −−− xtxrc  replaces the lost quantum at age x that results from delay in 
the timing of mortality from cohort to cohort. 

The close relationship between *
0e , or CAL , and 0e′ , can be illustrated by re-writing 

equation 23 as follows: 

 ∫
∞

−
−−

=′
00 ),(*

)(1
),(1)( dxtx

tr
xtxrxte

c

c φ  . (24) 

So long as ),( xtxrc −  does not vary widely as a function of age for a given t, then the ratio of 

),(1 xtxrc −−  to )(1 trc−  will be close to one.  Therefore, it is plausible that )()(*
00 tete ′≈  in 

many situations.  However, Guillot (2003) notes that the difference between CAL and 0e′  can be 
substantial:  for French males the difference was 2.51 years in 2001 and was even larger in 
earlier decades (9.24 years in 1954). 

In summary, from the standpoint of a “tempo-adjusted” value of life expectancy at birth, 

the quantity proposed by Bongaarts and Feeney, 0e′ , is a special case of *
0eCAL =  and is exact 

only when the shift between successive age distributions is strictly parallel (thus, ),( xtxsc −  and 
),( xtxrc −  are constant over age).  Therefore, 0e′  is an approximation of tempo-adjusted life 

expectancy at birth, which in its fully general form equals CAL , or *
0e , exactly.  A correct 

general interpretation of 0e′  is that it equals the mean age at death that would be observed in  

                                                 
7 Note that )(trc  also equals the pace of change over time in )(tCAL :  

)(),(*),(),(*
),(1

),(),()(
000

trdxtxxtxrdxtx
xtxs

xtxsdxxtxtCAL cc
c

c
cdt

d
dt
d =−=

−+
−

=−= ∫∫∫
∞∞∞

φφl . 
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year t for a population with a given mortality history and, hypothetically, a constant annual 
number of births (see further discussion below). 

4. Trends in Life Expectancy at Birth by Period and Cohort 

4.1 Speed of Change in Historical Trends 
Figures 3A and 3B show actual and smoothed trends in period and cohort life expectancy 

at birth, plotted in the usual way (by year of death for period 0e  and year of birth for cohort 0e ).  
Then, for comparison with period 0e , Figure 3C shows Swedish cohort 0e  plotted in two ways:  
both by year of birth, and in relation to the time when the cohort’s mean age at death actually 
occurs.  Note that the slope of the cohort trend tends to be greater than the slope of the period 
trend when cohort 0e  is plotted as a function of year of birth, but less when plotted according to 
the period in which the cohort mean age at death actually occurs. 

In part, such differences are due to fluctuations over time in historical mortality trends, 
which affect the mean life span of periods and cohorts in complicated ways.  Such factors are 
beyond the scope of the present work.  However, in addition to the arbitrary influences of 
history, there exists an intrinsic difference between period and cohort trends in 0e  due to the 
fundamental mathematical relationship linking the age and time of death to a decedent’s time of 
birth. 

4.2 Intrinsic Difference in Period-Cohort Slopes 

As before, let xt −=τ .  In words, ageperiodcohort −= .  Clearly, when x is fixed, 
dtd =τ .  However, when x is changing, dxdtd −=τ .  In that case,  

 rdt
dx

dt
d −=−= 11τ    and   sd

dx
d
dt +=+= 11 ττ . (25) 

where dt
dxr =  and τd

dxs = .  Therefore, 

 ( ) 111 −+=− τd
dx

dt
dx    or   ( ) 111 −+=− sr . (26) 

It also follows that  

 
s

sr
+

=
1

   and   
r

rs
−

=
1

. (27) 

Thus, r and s represent two different measures of the speed of change over time in some function 
of age.  The former is a slope with respect to the timing of the event itself, whereas the latter is 
with respect to the timing of birth for the cohort that experiences the event. 

Figure 4 offers a simple example:  A trend in which some measure of tempo increases by 
1 year of age over 5 years of time (thus, 2.0=r ).  However, the same increase involves only 4 
cohorts (thus, 25.0=s ). 
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4.3 Period-Cohort Trends in Linear Shift Model 

In order to elucidate the relationship between period and cohort mortality, it is useful to 
simulate historical trends using a model of a shifting distribution of age at death.  The shift 
model I will explore here has three important characteristics: 

a) It is linear (i.e., the trend in each percentile of the distribution is linear over time); 

b) It is continuous (i.e., the shift extends relatively far into both the past and the future); and 

c) It is defined in relation to a baseline mortality distribution associated with time 0=t .8 

To simplify the exposition, the linear shift model described here is specified in terms of 
period mortality at time 0=t .  It is also possible to define such a model as a function of cohort 
mortality at time 0=t  (i.e., based on a cross-section of cohort mortality distributions at this 
moment).  However, as shown in the Appendix, a continuous linear shift model yields identical 
results for those periods and cohorts whose life spans lie fully within the shift whether the model 
is defined in terms of period or cohort mortality.9  Therefore, I assume here that the time scale of 
the shift is relatively long (say, 150 years both forward and backward from time 0=t ). 

As was done earlier for cohorts, let us define percentiles of the period distribution of age 
at death (i.e., for the synthetic cohort associated with period t) as follows: 

 xta p =),(~ π    such that   ),(1),( txtx pp l−=Φ=π  ,  (28) 

where ∫=Φ
x

pp datatx
0

),(),( φ  is the distribution (or cumulative probability) function for age at 

death in period t.  Furthermore, assume that the percentile associated with the same value of π  
equals y at time 0=t : 

 ya p =)0,(~ π    such that   )0,(1)0,( yy pp l−=Φ=π  .  (29) 

The relationship between these two ages, x and y, can be used to specify the form of historical 
changes in the age distribution of deaths. 

For example, the core assumption of the linear shift model is that the values of x 
associated with a given y form a straight line, whose slope may vary as a function of age: 

                  tyryx )(+=    (for TtT <<− ), (30) 

where )( yr  can take on different values as a function of age, y, subject to certain restrictions (see 
Appendix); and T is the duration of the shift both forward and backward from 0=t .  In general, 
let us assume that T is sufficiently large to assure that all cohorts alive at 0=t  experience the 
shift for their entire lives.10 

                                                 
8 Time 0=t  is chosen as the baseline for the model in order to keep the formulas as simple as possible.  If one 
wishes to use some other year, say 0t , as the reference point for the shift, then all formulas shown here could be 
modified by substituting 0ttt −=′  in place of t. 
9 Note that if the model involves an abrupt change of slope in the percentiles of a mortality distribution at some 
moment close to the present, say 0=t , then there are important differences between these two approaches. 
10 If we allow for theoretically infinite life spans, T should be large enough to assure that a very high proportion of 
deaths (say, ε−1 , where 0>ε  is very small) for cohorts alive at time 0=t  occur during the period of the shift. 
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Note that π=−=Φ ),(1),( txtx pp l  is constant for all combinations of x and t along this 
percentile contour line.  Therefore, another way of describing the core assumption of a linear 
shift model is that 

 )(),( ytxp Φ=Φ    or   )(),( ytxp ll =  (31) 

where tyrxy )(−= .  Thus, )( yΦ  and )( yl  depict the baseline mortality distribution and 
survival probabilities for the linear shift model.  They are identical to the corresponding period 
mortality functions associated with time 0=t  in the simulated population (i.e., )()0,( yyp Φ=Φ  
and )()0,( yyp ll = ). 

It is shown in the Appendix that in a continuous linear shift model, period life expectancy 
at birth has the following form: 

 trete p += 00 )(  (32) 

where ∫
∞

=
00 )( dxxxe φ ; ∫

∞
=

0
)()( dxxxrr φ ; and )()()( xxx dx

d
dx
d l−=Φ=φ .  In the same model, 

life expectancy at birth for the cohort born in year τ  is as follows: 

 ∫
∞

++=
000 )(*)(*)( dxxxsxseec φττ  (33) 

where ∫
∞

=
00 )(** dxxxe φ ; ∫

∞
=

0
)(*)( dxxxss φ ; ( ))(1)()( xrxrxs −= ; )(*)(*)(* xxx µφ l= ; 

( ))(1)()(* xrxx −= µµ ; and ∫=
−

x
daa

ex 0
)(*

)(*
µ

l . 

In the simulated population, period life expectancy at time 0=t  serves as the baseline 
value for the linear shift model, i.e., 00 )0( ee p = .  Let us consider the relationship between this 
quantity and cohort life expectancy for two particular cohorts: 

a) The cohort born at that moment, i.e., 0=τ ; and 

b) The cohort whose average age at death occurs at time 0=t . 

As indicated by equation 33 above, cohort life expectancy is a function of *
0e , or CAL, at time 

0=t .  For the cohort born at time 0=τ , this equation simplifies to the following: 

 ∫
∞

+=
000 )(*)(*)0( dxxxsxeec φ  (34) 

However, case b) is more complicated. 

Obviously the cohort whose average age at death occurs at time 0=t  must have been 
born at some earlier date, say λτ −= , where 0>λ .  Setting λλ =− )(0

ce  in equation 33 and then 
solving for λ  yields the following formula: 

 *)(*
1

)(1)( 000 edxx
s
xsxec ≈

−
−

==− ∫
∞

φλλ  . (35) 



Wilmoth  Period and Cohort Mortality 

- 15 - 

Thus, )0(CAL  in the simulated population is the cohort mean age at death (approximately) that is 
attained at time 0=t  by a cohort born )0(CAL  years earlier (approximately). 

4.4 Empirical Application of Linear Shift Model 

The similarity between )(0 λ−ce  in the linear shift model and the earlier formula for )(0 te′  
provides the motivation for yet another measure of mean life span based on mortality conditions 
at time t.  By definition, let 

 ∫
∞

−
−−

=′′
00 ),(*

)(1
),(1)( dxtx

ts
xtxsxte

c

c φ  . (36) 

The quantity, )(0 te ′′ , is a linear projection of the cross-sectional cohort mortality pattern at time t.  
If historical changes mimic the linear shift model exactly, then λλ =−=′′ )()( 00 tete c .  Even when 
actual conditions differ from this model, )(0 te ′′  may serve as an approximation of cohort life 
expectancy for the cohort whose average age at death occurs at time 0=t . 

In Figure 5, smoothed trends in Swedish period and cohort life expectancy at birth are 
compared to the predictions derived from the linear shift model.  The predicted values of )(0 tec  
and )(0 te ′′  for each year are derived by re-scaling the time axis in each case so that the current 
year is treated as 0=t  in the above formulas.  Thus, I create a separate linear projection based 
on current (cohort) mortality patterns in each year, and from each of these linear shift models I 
derive values of cohort life expectancy for these two cohorts.  Predictions match reality 
reasonably well.  However, the purpose of these calculations is not to obtain estimates or 
forecasts of cohort life expectancy, but rather to provide insights into the relationship between 
period and cohort mortality. 

Note that ( ))()()(*)( 002
1

0 tetetetCAL ′′+′≈= , since 1
)(1

),(1
)(1

),(1
2
1

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+
+

−
−−

ts
xtxs

tr
xtxr

c

c

c

c .  

In the special case where rxtxrc =− ),(  and sxtxsc =− ),(  for all x, these relationships are 
exact, as the three measure are identical in this situation. 
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5. Average Age at Death vs. Life Expectancy at Birth 

[This section not finished yet] 

5.1 Mean Age at Death in the Actual Population 

An observed quantity; the average age at death in a population at time t: 

 

∫
∫

∫
∫

∫
∫

∫
∫

∞

∞

∞

∞

∞

∞

∞

∞

−−

−−
=

−−

−−
=

==

0

0

0

0

0

0

0

0
1

),()(

),()(

),(),()(

),(),()(

),(),(

),(),(

),(

),(
)(

dxxtxxtB

dxxtxxtBx

dxtxxtxxtB

dxtxxtxxtBx

dxtxtxN

dxtxtxNx

dxtxD

dxtxDx
ta

c

c

c

c

φ

φ

µ

µ

µ

µ

l

l
 (37) 

5.2 Mean Age at Death in a Constant-Birth Population 
A hypothetical quantity; the average age at death at time t assuming constant birth series 

(equals the version of “tempo-adjusted” life expectancy at birth proposed by Bongaarts and 
Feeney): 

 ∫
∫
∫

∫
∫ ∞

∞

∞

∞

∞

−
−

=
−

−
=

−

−
=′=

0

0

0

0

0
02 1

),(

),(

),(

),(

),(
)()( dx

r
xtxx

dxxtx

dxxtxx

dxxtxB

dxxtxBx
teta

c

c

c

c

c

c φ

φ

φ

φ

φ
 (38) 

5.3 Mean Age at Death Implied by Cross-Sectional Cohort Survival Probabilities 
A hypothetical quantity; the average age at death in a synthetic cohort for which the 

probability of survival to age x equals the proportion of survivors in year t for the cohort born at 
time xt − : 

 { } ∫∫∫ ∫
∫

∞∞∞

∞

−==−=

−===

000 0

003

),(*),(),(*),(*exp

),()(*)()(

dxtxxtxxdxtxxdxdata

dxxtxtetCALta

c

x

c

µφµ l

l
 (39) 

5.4 Mean Age at Death Implied by Current Death Rates 

A hypothetical quantity; the average age at death in a cohort that experiences the 
mortality risks observed at time t, as measured by age-specific death rates, i.e., )(0 te p  (period life 
expectancy at birth): 

 
{ }

∫∫
∫ ∫∫

∞∞

∞∞

==

−===

00

0 0004

),(),(),(

),(exp),()()(

dxtxtxxdxtxx

dxdatadxtxteta

pp

x

p
p

µφ

µ

l

l
 (40) 
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5.5 Comparison of Four Measures 

To compare these four formulas, it is helpful to write them using similar but abbreviated 
forms (omitting values in parentheses and ranges of integration).  Thus: 

 ∫
∫ ⋅−⋅

⋅
⋅= dx

BdarB
xa

cc

c

*)1(
1

φ

µl  (41)  

 ∫∫ ⋅⋅≈
−

⋅⋅= dxxdx
r

xa c
c

c *
12 µµ

ll  (42)  

 ∫∫ ⋅⋅=
−

⋅⋅= dxxdx
r

xa c
c

c *
13 µµ

ll  (43)  

 ∫ ⋅⋅= dxxa p µl4  (44)  

6. Conclusion 

[This section not finished yet] 

Trends in period life expectancy at birth misrepresent the lived experience of cohorts in 
terms of the speed of change in the average length of life. 

Proposed alternative measures (CAL and 0e′ ) reflect different conceptualizations of 
“average age at death,” not a correction for a distortion in period 0e . 

7. Appendix 

7.1 Percentile Slopes of Cohort Distributions of Age at Death 

Recall from the main text that percentiles of the distribution of age at death for the cohort 
born at time τ are defined as follows: 

 xac =),(~ τπ    such that   ),(1),( ττπ xx cc l−=Φ=  ,  (9) 

where ∫=Φ
x

cc daax
0

),(),( τφτ  is the distribution (or cumulative probability) function for age at 

death in the given cohort.  Also recall the following definition for the pace of change (from 
cohort to cohort) in the percentile of this distribution that occurs at age x: 

 ),(~),( τπτ τ cd
d

c axs =  ,  (10) 

where ),( τπ xcΦ=  is fixed.  I show here that this cohort percentile slope has the following 
equivalent forms: 

 
),(

),(
),(

),(ln
),(

),(
),(

),(
),(

τµ
τ

τµ
τ

τφ
τ

τφ
τ

τ ττττ

x
xH

x
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x
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x
x

xs
c

cd
d

c

cd
d

c

cd
d

c

cd
d

c
−

===
Φ−

=
ll

 .  (11) 
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For simplicity, let us consider a single age x for the cohort born at time τ, and let 
),( τxss c= .  As noted by Bongaarts and Feeney (2002), in order for s to equal the slope of the 

percentile associated with age x for the given cohort, it must satisfy the following equation: 

 0),(
0
=++Φ

=acda
d asax τ  .  (45) 

That is, a change of s units in x accompanied by a unit change in τ is associated with no change 
whatsoever in the cumulative probability of death, π, in the immediate vicinity of x and τ.  Let 

saxy +=  and au +=τ .  It follows that: 

 ),(),(),(),(),( uysuyuyuyasax cdu
d

cda
du

cdu
d

da
dy

cdy
d

cda
d Φ+=Φ+Φ=++Φ φτ  .  (46) 

Setting 0=a  and equating the result to zero gives us the following expression: 

 0),(),( =Φ+ ττφ τ xsx cd
d

c  .  (47) 

Solving for s yields the first relationship in equation 11.  The other three forms of s are an 
immediate result of the following elementary relationships:  (a) ),(),( ττ ττ xx cd

d
cd

d Φ−=l ;  
(b) ),(),(ln ττ ττ xHx cd

d
cd

d −=l ; and (c) ),(),(),( τµττφ xxx ccc l= . 

7.2 Fundamental Properties of Linear Shift Model 

7.2.1 Period and Cohort Life Expectancy at Birth 

As stated in the main text, a linear shift model can be specified by assuming that each 
percentile of the period distribution of age at death (i.e., within successive period life tables for 
the simulated population) is constant along a line defined by the following equation: 

                  tyryx )(+=   (for TtT <<− ), (30) 

where )( yr  can take on different values as a function of age, y, subject to certain restrictions (see 
section 7.2.3 below); and T is the duration of the shift both forward and backward from 0=t .  
Note that )( yrdt

dx =  for all combinations of x and t along this line.  In other words, 

 )(),( ytxp Φ=Φ    or   )(),( ytxp ll =  (31) 

where tyrxy )(−= .  Note that ( )tyrdx
dy )(11 ′+= , where )()( yryr dy

d=′ . 

Thus, )( yΦ  and )( yl  depict the baseline mortality distribution and survival probabilities 
for the linear shift model.  They are identical to the corresponding period mortality functions 
associated with time 0=t  for the simulated population (i.e., )()0,( yyp Φ=Φ  and 

)()0,( yyp ll = ).  Differentiating ),( txpΦ  with respect to age, we obtain the period distribution 
of deaths by age: 

 
tyr

yytxtx dx
dy

dy
d

pdx
d

p )(1
)()(),(),(

′+
=⋅Φ=Φ=

φφ  . (48) 

Then, using the change of variable from x to y given above, we may calculate period life 
expectancy at birth as follows: 
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 , (49) 

where ∫
∞

=
00 )( dyyye φ  and ∫

∞
=

0
)()( dyyyrr φ . 

Furthermore, the death rate at age x and time t is given by: 

 
tyr

y
tx
tx

txtx
p

p
p )(1

)(
),(
),(

),(),(
′+

===
µφ

µµ
l

 , (50) 

where )()()()()( yyyyy dy
d lll −== φµ  is the death rate at age y implied by the baseline 

mortality distribution.  For the cohort born at time τ , the death rate at age x is as follows: 

 
)()(1

)(),(),(
xzr

zxxxc +′+
=+=

τ
µτµτµ  (51) 

where )()( xzrxz +−= τ .  Note that ( ) ( ))()(1)(1 xzrzrdx
dz +′+−= τ .  Also note that 

)()( zzszx ++= τ , where ( ))(1/)()( zrzrzs −= . 

Now, using the change of variable from x to z given above, we can compute the 
cumulative death rate for the cohort born at time τ  as follows: 

 )(*)(*
)()(1

)(),(),(
000

bHdzzdx
xzr

zdxxaH
baa

cc ==
+′+

== ∫∫∫ µ
τ

µτµτ  (52) 

where )()( abrab +−= τ ; and ( ))(1)()(* zrzz −= µµ .  Based on this formula, it is simple to 
compute the probability of survival to age x for the cohort born at time τ : 

 )(*),( 0
)(*)(*),( zeeex

z

c
daazHxH

c ll =∫===
−−− µττ  (53) 

Therefore, the cohort distribution of deaths by age is as follows: 

 ( )
)()(1
)(*)(1

)()(1
)()(*

),(),(),(
xzr
zzr

xzr
zzxxx ccc +′+

−
=

+′+
==

τ
φ

τ
µτµττφ l

l  (54) 

where )(*)(*)(* zzz µφ l= .  Then, using the same change of variable from x to z, we can 
calculate cohort life expectancy at birth as follows: 
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 (55) 

where ∫
∞

=
00 )(** dzzze φ  and ∫

∞
=

0
)(*)( dzzzss φ . 

7.2.2 Equivalence of Period- and Cohort-based Models 

The linear shift model described in the main text and in the previous sub-section is 
specified in terms of period mortality.  In other words, mortality change for the simulated 
population is described as a shift in the distribution of age at death in a series of period life 
tables.  Thus, by design the period percentile slope at age x in year t, ),( txrp , equals )( yr , 
where tyrxy )(−= .  We can confirm this relationship by differentiating the period survival 
probability, ),( txpl , with respect to time t: 

 )(),()(
)(1

)()(),( yrtxyr
tyr

yytx pdt
dy

dy
d

pdt
d φφ

=
′+

== ll  , (56) 

since )()( yydy
d φ−=l  and ( )tyryrdt

dy )(1)( ′+−= .  Then, by the same logic used earlier to 
compute cohort percentile slopes (see section 7.1 above), it follows that: 
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 . (57) 

Note that this result merely reflects the core assumption of the model. 

On the other hand, values of cohort percentile slopes in this model are a consequence of 
the assumptions and must be derived.  As before, the change of variable used for computing 
cohort mortality is defined by the equation, )()( xzrxz +−= τ .  Differentiating the cohort 
survival probability, ),( txcl , with respect to time τ , we obtain: 
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since )(*)(* zzdz
d φ−=l  and ( )( )xzrzrd

dz +′+−= ττ )(1)( .  It follows that: 
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Thus, a key property of the linear shift model is the close relationship between the period and 
cohort percentile slopes: 



Wilmoth  Period and Cohort Mortality 

- 21 - 

 
),(1

),(
),(

txr
txr

xs
p

p
c −

=τ    and   
),(1

),(),(
τ

τ
xs

xstxr
c

c
p +

=  , (60) 

assuming xt −=τ . 

Turning the derivation around, we begin by specifying that the percentiles of successive 
cohort distributions of age at death are constant along a line defined by 

                  )()( zzszx ++= τ   (for TtT <<− ) . (61) 

Note that )(zsd
dx =τ  for all combinations of x and τ  along this line.  In other words, the linear 

shift model is now based on the core assumption that 

 )(*),( zxc Φ=Φ τ    or   )(*),( zxc ll =τ  , (62) 

where )()( zzsxz +−= τ .  Since x−=τ  at time 0=t , this assumption implies that 

 )(*),( zzzc Φ=−Φ    or   )(*),( zzzc ll =−  . (63) 

Therefore, the functions )(* zΦ  or )(* zl , again depict the cross-sectional cohort mortality 
distribution at time 0=t  for the simulated population.  From equation 61, we obtain 

( )( )zzszsdx
dz +′++= τ)()(11 . 

Note that both the change of variable implied by equation 61, and the derivative of z with 
respect to x that follows from this equation, are equivalent to the forms given earlier as part of 
the original derivation of the linear shift model.  To demonstrate the equivalence of the change of 
variable itself, add τ  to both sides of equation 61 and rearrange the equation to obtain 

( ) )()(1 zzsx ++=+ ττ .  Since ( ) 1)(1)(1 −−=+ zrzs , it follows that ( ) )()(1 xzrz +−=+ ττ , and 
thus )()( xzrxz +−= τ .  Equivalence of the two forms of the derivative, dx

dz , follows from the 
additional observation that ( ) ( ))(1)()(1)( zrzrzszs −′=+′ .  In summary: 

 )()()()( xzrxzzsxz +−=+−= ττ  (64) 

and 
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=
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1  . (65) 

Differentiating ),( τxcΦ  with respect to age, the cohort distribution of deaths by age is as 
follows: 

 ( )zzszs
zztxx dx

dz
dz
d

cdx
d

c +′++
=⋅Φ=Φ=

τ
φτφ

)()(1
)(*

)(*),(),(  . (66) 

Dividing through by )(*),( zxc ll =τ , we obtain the death rate at age x for the cohort born at 
time τ : 
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Finally, the death rate at age x and time t is as follows: 

 
tyr

yxtxtxtx cp )(1
)(),(),(),(

′+
=−==

µµµµ  , (68) 

where tyrxy )(−= ; and ( ) )(*)(1)( yyry µµ −= . 

Therefore, the surface of death rates over age and time, ),( txµ , has the same form, and 
thus the relationship between all period and cohort mortality functions is the same, whether a 
linear shift model is specified in terms of period or cohort mortality.  However, as noted in the 
main text, this equivalence pertains only to periods and cohorts whose entire life experience 
takes place within the shift.  In other words, discontinuities at the start and end of the shift have 
different forms for period-based and cohort-based models.  Since the purpose of this analysis is 
to understand the relationship between period and cohort mortality under conditions of stable 
change, such patterns are not considered here. 

7.2.3 Necessary Restrictions on Percentile Slopes 

[This section not finished yet] 
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Figure 1 
Schematic representation of derivatives in three directions  

of cohort cumulative probability function, ),( τxcΦ  
 

 
 
 
Note:  By assumption, xt −=τ . 
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Figure 2 
Two forms of cohort distribution of deaths by age, ),( τφ ac  and ),(* taφ , in relation  
to cumulative probability of death, ),( τxcΦ , and probability of survival, ),( τxcl  

 

 
 
 
Note:  By assumption, xt −=τ . 
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Figure 3 
Life expectancy at birth in Sweden 

 
A) Periods, actual vs. smoothed trends, 1751-2002 

 

 
 
 
Note:  The observed trend was smoothed using the LOWESS method (Chambers et al., 1983). 
 
Source:  Human Mortality Database (2004). 
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Figure 3 (cont.) 
 

B) Cohorts, actual vs. smoothed trends, 1751-1911 
 

 
 
 
Notes:  (1) See note for Figure 3A.  (2) Data employed here for cohorts born after approx. 1890 
are incomplete.  Therefore, estimates of life expectancy at birth for these cohorts rely on recent 
period data at very high ages (i.e., above age 90). 
 
Source:  Human Mortality Database (2004). 
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Figure 3 (cont.) 
 

C) Periods vs. cohorts, smoothed trends only 
 

 
 
 
Notes:  See notes for Figure 3B. 
 
Source:  Human Mortality Database (2004). 
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Figure 4 
Simple example illustrating intrinsic difference in slope of age trend  

from perspective of periods ( 2.0=r ) and cohorts ( 25.0=s ) 
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Figure 5 
Life expectancy at birth in Sweden by period and cohort, plus estimates of cohort  
values assuming linear trends in cross-sectional cohort percentiles of age at death 

 

 
 
 


