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Abstract

How would resources be allocated among fertility, survival, and growth in

an optimal life history? The budget constraint assumed by past treatments

limits the energy used by each individual at each instant to what it produces

at that instant. We develop explicit solutions for the optimal life history in

this case, extending the current literature that presents numerical solutions

and permitting comparative static analysis. Then we consider under what

conditions energy transfers from adults, which relax the rigid constraint by

permitting energetic dependency and faster growth for the o¤spring, would be

advantageous. In a sense, such transfers permit borrowing and lending across

the life history. Higher survival and greater e¢ ciency in energy production

at older ages than younger both favor the evolution of transfers. We show

that if such transfers are advantageous, then increased survival up to the age

of making the transfers must co-evolve with the transfers themselves.

Key words: evolution, longevity, mortality, intergenerational transfers, life

history, optimal energy allocation.
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The Co-evolution of Intergenerational Transfers and
Longevity: An Optimal Life History Approach

1 Introduction

A growing literature seeks the optimal solution to the �general life history

problem�, how to allocate resources among fertility, mortality and growth

from birth to death.3 Studies assume that the individual can use only the

energy that it produces (forages) in each period, and optimize the life history

subject to this strict budget constraint. But what if individuals were per-

mitted to borrow and lend over their life cycles? That would permit a stage

of nutritional/energetic dependence early in life with rapid growth and de-

velopment, followed by a corresponding adult stage of �repayment�in which

transfers are made to the young. The steady state constraint for transfers

is that the survival-weighted and discounted sum of transfers received minus

transfers made over the life cycle must be zero, similar to a life cycle budget

constraint with borrowing and lending at an interest rate equal to the popu-

lation growth rate. Many species have life histories of this sort, including all

mammals, most birds, many insects, and some �sh and reptiles (see Clutton-

Brock [1991]). Here we will consider how the optimal life history changes

shape when intergenerational transfers are permitted and confer a selective

advantage. Lee (2003) took the existence of transfers as given, and did not

consider physiological tradeo¤s. In this paper we will examine the conditions

under which transfer behavior (parental care) evolves, and consider how mor-

tality co-evolves, when tradeo¤s are explicitly modeled through the energy

budget constraint.

3See for instance Taylor et al. (1974), Goodman (1982), Scha¤er (1983), Stearns (1992),

Abram and Ludwig (1993), Cichon (1997), Cichon and Kozlowski (2000), Clark and Man-

gel (2000), and Kaplan and Robson (2002).
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The analysis we present is formally applicable to cooperative breeders,

that is, groups of individuals in which some members across the age spectrum

potentially provide food and care to young that are not necessarily their own

o¤spring.4 In such cases, we can imagine a lineage carrying a mutation

forming a stable population in aggregate, and �ssioning into cooperatively

breeding groups. Within each group, transfers of food take place. Each

group can be viewed as a microcosm of the lineage, with random departures

from its stable age distribution.5 Humans are cooperative breeders, and

the idea is well-established that their exceptional longevity, particularly in

postreproductive years, is related to their transfer behavior.6 There is also

evidence (Brown [1987]) that cooperatively breeding bird species live longer

than others.

We begin by considering what life history for a lineage-founding individ-

ual would produce the greatest number of living descendants at a speci�ed

future date, optimizing subject to the usual budget constraint that does not

allow transfers (section 2). We show that the appropriate measure of �tness

to be maximized for this individual turns out to be the Euler-Lotka para-

meter (section 3). This sets the stage for considering the conditions under

which intergenerational transfers would be selected. We investigate when

such transfers increase �tness (section 4), and if they do, how low mortality

coevolves with them (section 5). The last two sections contain extensions

4Whether or not cooperative breeding evolved to facilitate intergenerational transfers,

the demography of cooperative breeding groups provides an analytic setting in which stable

population methods can be appropriately used.
5The analysis for transfers within parent-o¤spring sets is more di¢ cult, because their

age distributions cannot plausibly be viewed as microcosms of the lineage. However, the

technical di¢ culties in analyzing the parent-o¤spring case do not seem to point to substan-

tive di¤erences in the explanation of transfer behavior between this and the cooperative

breeding contexts.
6See Clutton-Brock (1991), Kaplan and Robson (2002), Lee (2003) and Lahdenpera et

al. (2004).
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and conclusions.

2 A New Model of Optimal Life History

We �rst consider the case in which transfers are not an evolutionary option.

The analysis could be carried out for a life history of potentially unlimited

length, but we will instead consider the more realistic case of an individual

who is not fertile past age y:7 To avoid the complications of mating and sexual

reproduction, we will consider a population of females reproducing asexually.

To unify the terminology and notation, we call the age interval [a; a+1) age

a + 1, and assume that all decisions a¤ecting age a + 1 are made at time a.

The probability that a person survives from a toward the point a + 1 (that

is, toward the end of the open age interval) is denoted pa+1. Fertility at age

(a+ 1) takes place toward the point a+ 1, and is denoted ma+1.

At age a, a typical individual expects to have energy or resources which,

following Abram and Ludwig (1995), Cichon (1997) and Vaupel et al. (2004),

she allocates to fertility (ma), maintenance (pa) and growth (za). We can

think of growth as increase in body size, but we could also think of it as

other kinds of physical investment such as development of the brain, as in

Kaplan and Robson (2002) and Robson and Kaplan (2003). Because the

individual can potentially reproduce in all periods before y, there is a tradeo¤

7It is not necessary to assume that fertility is 0 past some age y: However, absent this

assumption, fertility and survival would never reach zero in our optimization setup. As

long as fertility and survival are not in�nitely costly, death will never be optimal in our

model setup. This is because fertility ma occurs only after survival pa, so it can never be

optimal to spend all energy on fertility at some age and none on survival. For this reason,

our analysis focuses on survival rather than on life span. We could de�ne the end of life as

that age at which the probability of survival to the next period drops below some speci�ed

level, such as .001. Perhaps for similar reasons, Cichon and Kozlowski (2000) adopted this

approach.
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between energies devoted to reproduction, growth and maintenance: Having

more children early in life comes at the expense of her growth and survival

probability, which in turn a¤ects her later fertility.

2.1 The Maximization Problem

The disposable resource or energy of an individual aged a depends on her

body size, denoted wa. Speci�cally, her age-a budget (energy) constraint is

written as

bapa + cama + daza � �awa; 8a (1)

where ba, ca, da are constant coe¢ cients, which express the rate at which

energy can be used to achieve various levels of survival, fertility or growth.

�a is a production coe¢ cient linking body-size with the net production, or

acquisition through foraging, of disposable energy. It is easy to see that one

of the four coe¢ cients (ba; ca; da; �a) in (1) is redundant, and so at each age

a, we normalize �a to be 1 . This simpli�es the expressions in what follows,

but note that whenever we need to combine units of energy from di¤erent

ages, we will have to convert the units appropriately. When this happens we

will alert the reader.

The body size of an individual grows according to the following rule:

wa+1 � wa + za: Note that given the same body size w, an older individual
may still be weaker and more vulnerable, as re�ected in a larger ba (higher

costs of achieving survival level pa). The initial body size w1 is itself an

important intergenerational transfer from the mother. In our analysis, w1
is given, while the adult size is part of the optimization problem through

allocation of energy to growth. Thus the ratio of birth size to adult size is

endogenous in our analysis. Given our linear homogeneous budget constraint,

scale is irrelevant, so only this ratio matters. In this paper our emphasis is
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on intergenerational transfers occurring after birth.8

We expect that natural selection will maximize reproductive �tness, mea-

sured as the representation of an individual�s genes at some future date � .

Since we are assuming clonal reproduction, this is equivalent to maximizing

the number of living descendants at some date � , which may be far beyond

the individual�s �nite lifespan.9 Consider an individual age a at time t. Let

Va;t(:) be her contribution to the number of descendants at time � . Here t

will measure the remaining length of time until � , when �tness is assessed,

so for individuals closer to � , t will be smaller. Bellman�s (1957) principle

of optimality can be used to maximize the expected number of future de-

scendants at � . According to this principle, energy is allocated at age a and

period t so as to maximize the contribution to �tness assessed at � , assuming

that the energy in all future ages and periods is also allocated optimally.

2.2 The Solution

We shall �rst �x age 1 as the benchmark and try to solve the dynamics in

terms of the age-1 value function. For any a 2 f1; 2; :::; yg, let the age-a
strategy be �a � (pa;ma; za) and its feasible set be 
(wa). For any t, the

8The linear form of the budget constraint, as in Taylor et al. (1974) and Vaupel et al.

(2004), is to some extent restrictive. Appropriate nonlinear e¤ects would include an upper

bound of unity for pa, with increasing costs as this limit is approached; a dependence of

pa on body weight wa; and a dependence of fertility on body weight.
9As we shall see, once the population reaches steady state, the �tness measure is also

stable. For this reason, � should exceed the approximate number of periods from the time

in question until the steady state is reached.

7



Bellman equations can be written as10

V1;t(w1) = max
�12
(w1)

[p1m1V1;t�1(w1) + p1V2;t�1(w1 + z1)] (2)

...

Vy�1;t(wy�1) = max
�y�12
(wy�1)

[py�1my�1V1;t�1(w1) + py�1Vy;t�1(wy�1 + zy�1)]

Vy;t(wy) = max
�y2
(wy)

[pymyV1;t�1(w1)]:

The interpretation of the above equations is as follows: p1m1 in the �rst

term on the right hand side of (2) characterizes the event that an age-1

individual survives (with probability p1) and bears m1 o¤spring. Since each

of these o¤spring is valued V1;t�1 in period t � 1 (because the o¤spring is
one period closer to �), V1;t�1 should be multiplied by p1m1 to obtain the

expected value. The V2;t�1 in the second term of (2) is the value function

of this individual at age-2. With probability p1 the individual will survive

to face this state, and so V2;t�1 should be multiplied by probability p1. The

age-2 body size should be w2 = w1 + z1 instead of w1. The interpretations

of other expressions are similar, so we move forward to the last equation.

For an individual aged y in period t, py and my are chosen to maximize the

expected value of the last birth. At age y, there is no gain from further

growth.11 This generates the age-y expected value pymyV1;t�1. Since y is the

last fertile age by assumption, there is no second term for the last equation.

10See Ross (1983) for more details of the technical background behind (2).
11The growth of a post-reproductive individual might still be valuable if she could trans-

fer some wealth to her young o¤spring, but here we are considering the case in which this

is not possible, re�ected in the budget constraint in equation (1). See also Lee (2003).
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3 Interpreting the Solution

We denote the optimum in (2) by ��a = (p
�
a;m

�
a; z

�
a). Now, we try to write (2)

in terms of V1;t for di¤erent t�s. Let �a � p�1 � � � p�am�
a be the net maternity

function. Starting from the age-y equation, lagging each equation by one

period, substituting it into the equation one line above, and iterating the

process, we obtain

V1;t = �1V1;t�1 + �2V1;t�2 + � � �+ �yV1;t�y: (3)

In the steady state, expression (3) is a simple di¤erence equation for V1;t, of

which the solution is V1;t = A1�
t
1 + � � �+Ay�ty; where the Ai�s are constants,

and ��s are solved from the characteristic equation of (3): �t = �1�
t�1 +

�2�
t�2+ � � �+�y�t�y: Since the individual is maximizing clonal reproduction,

only the largest root of the characteristic equation is relevant, call it �� and

call the associated Ai simply A. Then we have: V1;t = A(��)t 8t in the
steady state. From now on, we shall normalize A to be 1 to simplify the

notation.

3.1 The Dynamics

For any given w1, V1;t is actually a variable (instead of a function) to be

solved. Let � � (�1; :::; �y). We rewrite the maximization problem in (2) as

V1;t = max
�

h
p1m1V1;t�1 + p1p2m2V1;t�2 + :::+ p1p2:::pymyV1;t�y

i
: (4)

Expecting that the solution of V1;t is a power function of �, we imagine the

following solution method. For any given �0, replace V1;t by (�0)t, and solve

for �0 from max� g(�; �0), where g(:; :) is such that

[g(�; �0)]
t � p1m1(�0)

t�1 + p1p2m2(�0)
t�2 + :::+ p1p2:::pymy(�0)

t�y:
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Let the � that is obtained from the above maximization problem be �0. Then,

for s = 1; 2; :::, we let

�s = max
�s�1

g(�s�1; �s�1): (5)

The dynamic process described in (5) is similar to the one in McNamara

(1991) and Houston and McNamara (1999), where it is shown that under

some technical conditions, an iteration of (5) will converge to the stable-

population ��. Our later comparative statics will also be analyzed based on

the dynamic structure of (5).

3.2 The Meaning of the Value Function

An advantage of our approach is that the contribution of an individual to

the future population of living descendants at � can be solved analytically.

Here we �rst illustrate the meaning of this solution.

What is V1;t(w1)? It is the individual�s assessment at age 1 of the value

of her resources (w1), in terms of the contribution to future descendants. We

also show in Part A of the Math. App. that the steady-state solution of Va;t
for any a is given by:

Va;t =
�a

p1 � � � pa�1
(��)t�1 + � � �+

�y
p1 � � � pa�1

(��)t�y+(a�1): (6)

Evidently, for all a = 2; 3; :::; y, Va;t is also discounted at the rate �
�. Note

that Va;t(:) is closely related to Fisher�s (1930) concept of reproductive value.

What does it mean to have V1;t = (�
�)t? We note that pa is the probability

that a child can survive through the interval (a; a+ 1], given her initial size

wa. Let l�a = p
�
1 � � � p�a.be the probability of survival from birth to age a. In

view of the de�nition of �a, we can rewrite (4) as

1 =

yX
a=1

l�am
�
a�
�a; (7)
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This is the Euler-Lotka equation. Its largest root is the steady state popula-

tion growth rate. Thus, we have

Proposition 1: The solution to the value function in (2) has the form

V1;t = (�
�)t, where �� is the Euler-Lotka parameter solved from (7).

Most previous literature on population evolution, to our knowledge, as-

sumes that the Euler-Lotka parameter is the target of maximization. In the

analysis above, we derive what a sel�sh agent, that maximizes its own clonal

replication, would do, and show that the objective to be optimized turns out

to be the Euler-Lotka parameter. The generic optimization problem char-

acterized in (2) not only helps us understand the micro foundations of the

Euler-Lotka parameter, but also speci�es the framework for the comparative

static analysis of the next section.

4 Optimal Life History and Transfers

4.1 A Corner Solution Pattern

In reality, many species �rst grow and then become fertile once they have

reached their adult size. They cease growth or grow very slowly once they

start bearing o¤spring. Our main interest is in species that make intergener-

ational transfers, such as mammals or birds, and these exhibit determinate

growth of the sort described. The following proposition, proved in Part B of

the Math. App., shows that the determinate growth pattern emerges in our

model:12

12Suppose with e¤ort za there is probability q(za) of achieving size wa + g1, and proba-

bility 1 � q(za) of achieving size wa + g2. In this case, our corner-solution argument will
not hold. This may correspond to the case of indeterminate growth. An interior solution

could also arise if the rates of converting energy into fertility and into body size were not

constant, but rather varied with the amount of energy so converted. See Stearns (1992)
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Proposition 2: ma and za cannot be interior solutions at the same time.

Proposition 2 is intuitive, consistent with that found in Taylor et al.

(1974), and Vaupel et al. (2004) and is convenient for our later analysis.

Simple di¤erentiation of (2) tells us that any growth in size at age a has the

bene�t of increasing future o¤spring at various ages by a constant factor:

pa+1=ca+1 at age a + 1, pa+1pa+2=ca+2 at age a + 2, � � � : Furthermore, in a
steady state the value of a new-born at time t is proportional to �t. Thus

the steady-state tradeo¤ between increasing size and bearing o¤spring is a

constant, which depends on the parametric value of ca�s and da�s. Therefore,

a corner solution of either ma or za must arise.

In what follows, we shall concentrate on analyzing the case in which an

organism �rst grows for r periods, and then stops growing and reproduces.

In our notation, the organism would have ma = 0 in the �rst a � r periods,
and would have za = 0 when a � r + 1.13

4.2 When Will Downward Transfers Be Selected?

In some species, parents invest in their o¤spring after birth by making trans-

fers of food, guarding against predators, warming or ventilating them, and

so on. We shall focus on the most prevalent form of transfers by mammals,

when adult individuals aged j � r + 1 transfer something to o¤spring aged
i � r. We ask when such a transfer would raise the intrinsic growth rate �,
and therefore be selected.

Recall that equation (1) was normalized at each age a by dividing through

by �a. Because of this, when we consider transfers between ages i and j, we

and Taylor et al. (1974).
13For instance, when y = 3 (three periods of life) and r = 1 (the �rst period being

childhood), Part B of the Math. App. shows that the conditions for a switch of corner

solutions at the junction of age 1 and age 2 are d1�
2 < c1p2(�=c2 + p3=c3) and d2� >

c2p3=c3.
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must use a conversion factor �ij (= � i=�j). Let the transfer given by an

individual at age-j be Tj and the amount received by an age-i by Ri. The

demography imposes a feasibility condition on these transfers in a steady

state:

�ij�
j�ig(Ri) = pi � � � pj�1Tj: (8)

where g(:) characterizes the technology for receiving transfers and convert-

ing them into the equivalent of energy directly produced by the age-i child

recipient,14 with g(0) = 0, and g0(:) > 0. If there is no di¢ culty in convert-

ing the transferred energy, then g(R) simply equals R: We introduce g(:) to

re�ect the likelihood that the transfer process becomes less e¢ cient at very

high rates. This nonlinearity makes it possible to consider interior optimal

transfers.

Because fertility is zero in the �rst r periods of life, from (1) we have

zs = (ws � bsps)=ds; s � r. For the age-i, zi = (wi + Ri � bipi)=di because
the age-i agent receives transfer Ri. And because there is no body growth in

periods s � r + 1, we know from (1) that ms = (ws � bsps)=cs 8s � r + 1.
For the age-j, mj = (wj � Tj � bjpj)=cj; because the age-j agent gives out
transfer Tj. Finally, since body size does not grow after age r + 1, we have

ws = wr+1 8s � r + 1.
With this background information and assuming steady state, equation

(4) can be rewritten as

�t = max
�s
p1 � � � pr[pr+1mr+1�

t�r�1 + � � �+ pr+1 � � � pymy�
t�y]; (9)

where all ps and ms are evaluated at their optimal values. Note that the

value of Ri is implicit in this equation, and is here taken as given and �xed.

14We characterize the transfer by its energy cost to the individual making the transfer.

The function g(:) should have a subscript i to indicate that this is a function speci�c to

age-i. However, since our analysis applies to any unspeci�ed i, for the time being we drop

this subscript i for simplicity of notation.
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Note also that the form in which (9) is written assumes that r is given,

whereas it is in fact endogenous, and varies as ps, ms and zs vary. For small

variations in the neighborhood of the optimum, however, r will not change.

To see this, imagine that we carried out many optimizations of the form of

(9), sequentially taking r equal to a for every possible discrete age group a.

If we now choose the value of r with associated the greatest maximum value

of �, that will be the optimal r which occurs in (9): Note that this value of r

is a function of the level of transfers Ri. However, due to the discreteness of

the age groups, for small variations of Ri the value of the optimal r will not

change. For this reason, we can di¤erentiate (9) with respect to transfers Ri
to determine the e¤ect on � of a marginal increase in transfers.

Starting from a scenario with no transfers (Ri = 0), we shall evaluate how

the steady state selection criterion � will be a¤ected by the introduction of

a marginal transfer. The case of optimal transfers will be discussed brie�y

later. We now di¤erentiate (9), use the steady state condition V1;t = �
t, and

evaluate the expression at Ri = 0 to obtain15

�t
n t
�
� lr

hpr+1(t� r � 1)mr+1

�r+2
+ � � �+ (t� y)pr+1 � � � pymy

�y+1

io
d� (10)

= lr

n
Ki

hpr+1�t�r�1
cr+1

+ � � �+ pr+1 � � � py�
t�y

cy

i
� pr+1 � � � pj

�t�j

cj
Gij

o
dRi;

where

Gij

���
Ri=0

� dTj
dRi

�
�ij�

j�ig0i(Ri)

pi � � � pj�1

���
Ri=0

is the conversion factor between the transfer Tj and the e¤ective value of the

transfer received, and

Ki �
1

di

�
1 +

1

di+1

�
� � �
�
1 +

1

dr

�
;

15Note that the derivatives of the right hand side of (9) with respect to ps (s = 1; :::; y)

are zeros due to the �rst order conditions of maximizing over ps, hence these terms do not

appear in the di¤erentiation. This is again an application of the envelope theorem.
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which is the compound factor of accumulating size from age i to maturity

(the end of age r).

In the general case when Ri � 0, (10) only needs some minor revision.

For Ri � 0, we can use (9) to cancel the terms associated with t, and multiply
both sides by �y�t=lr to obtain

�
h(r + 1)pr+1mr+1

�r+2
+ � � �+ ypr+1 � � � pymy

�y+1
�
pr+1 � � � pj�ijg(Ri)(j � i)

cjpi � � � pj�1�i+1
i
�yd�

+
n
Ki

hpr+1�y�r�1
cr+1

+ � � �+ pr+1 � � � py�
0

cy

i
� pr+1 � � � pj

�y�j

cj
Gij

o
dRi = 0

In this expression, the coe¢ cient of d� is negative by the stability condition

of �. Substituting in the formula for Gij, we have

Proposition 3: The sign of d�=dRi, which is the selection impact of a

marginal transfer from age-j to age-i, depends on that of

Bij � Ki

hpr+1�y�r�1
cr+1

+ � � �+ pr+1 � � � py�
0

cy

i
�
(pr+1 � � � pj)�ij�y�ig0(Ri)

cj(pi � � � pj�1)
: (11)

On the right hand side of (11), the �rst term (Ki[:]) is the lifetime ex-

pected sum of fertility increase, from age r+1 to age y, due to the increased

body size. The second term captures the lost fertility at age j due to the

out-transfer. Transfers to young individuals lead to larger adult body sizes,

which in turn generate more energy for growth and other purposes. The

envelope theorem (see footnote 14) tells us that the net marginal bene�t of a

change in Ri is evaluated by the net increase in reproduction. Because ms is

weighted by �s; we get Bij, which must be > 0 for the transfer to be selected.

Examination reveals that Bij > 0 is more likely to be met under the

following conditions: 1) When there are more age-j adults relative to age-i

o¤spring to share the costs of the transfer (either larger pi � � � pj�1; or lower
fertility, or both). Higher background mortality (larger coe¢ cients ba) would

work against the evolution of transfers. It also follows from (11) that trans-

fers are less likely to evolve in the context of rapid population growth (larger

15



�), for example for an opportunistic species or under favorable climatic con-

ditions, and more likely to evolve when carrying capacity is saturated. 2)

When the adults are relatively more e¢ cient than the child at generating

energy per unit body size (smaller �ij � � i=�j). Perhaps this is more likely
for carnivores than herbivores, since catching prey requires more skill, speed,

strength, and weaponry (teeth, claws). 3) When there is a lower cost to

augmenting body size between age i and age j (smaller ds; s = i; :::; r in Ki),

which makes the investment from adults more rewarding. 4) When survival

from age r+1 to j is high, so that low adult mortality is a predisposing fac-

tor for the evolution of transfers, at least up to the stage of the transferring

age.16

Transfers might be concentrated on younger o¤spring or older o¤spring.

In general, the compounded returns to early transfers (largerKi for smaller i)

favor transfers to the young, and the more so when the young convert energy

more e¢ ciently into body size (smaller da for small a�s). Transfers to older

juveniles might still evolve, if their survival were su¢ ciently high. Transfers

to infants will be more likely if infants are relatively helpless, and unable

to forage e¤ectively (low � i and hence low �ij). This would be more likely

true for carnivores but less so for herbivores. If older juvenile productivity

relative to body weight increased, then transfers to that age would be less

likely to evolve. Finally, a context of more rapid population growth favors

transfers to older juveniles (as revealed by the �y�i term).

5 Coevolution of Transfers and Longevity

Natural selection should move the life history toward the optimal �s �
(ps;ms; zs) to maximize the intrinsic growth rate �. We now switch back

16This can be seen by canceling the (pr � � � pj�1) term in the numerator and denomenator
of the second term of (11), and inspecting the remaining terms in Bij .
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to treating transfers, Ri; as given, and consider how the optimal levels of pk
depend on the level of transfers, for variations that are small enough such

that the optimal age of sexual maturity r; corresponding to the given level

of transfers Ri; does not change. We will develop one result (Proposition 4)

that holds in the neighborhood of the optimal level of transfers, R�i , and an-

other result (Proposition 5) that holds when transfers are below this optimal

level.

>From the corner-solution pattern presented in section 4.1, it follows that

the problem of �nding the optimal life history reduces to searching for the

optimal pa�s that maximize � in equation (9). Given that the transfer in

question is from age j to age i, it is natural to consider separately the �rst

order conditions for pk when k � r and when k � r + 1. We shall discuss

these cases separately below.

The premature age range corresponds to k � r. Di¤erentiating the right
hand side of (9) with respect to pk and using the envelope theorem, we see

that its �rst order condition is proportional to the following expression:

�pk � [pr+1mr+1�
y�r + � � �+ pr+1 � � � pymy�]

� pkbkKk

hpr+1�y�r
cr+1

+ � � � pr+1 � � � py�
cy

i
+
(pr+1 � � � pj)�y�i+1�ijg(Ri)

cj(pi � � � pj�1)
� I(k) = 0; k � r (12)

where I(k) = 1 if r � k � i, and I(k) = 0 otherwise. The term associated

with I(k) is from the di¤erentiation of (8) (dTj=dRi), which is nonzero only

if k is in the range between i and j. The Kk factor enters (12) because it is

the relevant compound growth factor up to age-k.

The sexually mature range corresponds to k � r + 1. Di¤erentiating (9)
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and using the envelope theorem yields the following �rst order condition:

�pk � (mk�
y�k+1 + pk+1mk+1�

y�k + � � � pk+1 � � � pymy�)

� pkbk�
y�k+1

ck
+
(pk � � � pj)�y�i+1�ijg(Ri)

cjpk(pi � � � pj�1)
� I(k) = 0; k � r + 1 (13)

where I(k) = 1 only if r + 1 � k � j � 1, and I(k) = 0 otherwise. In what
follows, we shall ask the following comparative static question: how does the

optimal pk change when Ri increases toward its optimum R�i ?

We note that in the ongoing process of evolution, the cumulation of mar-

ginal changes should eventually maximize a species��tness and hence exhaust

the selection advantage of increasing transfers by choosing the optimal R�i
such that

d�=dRi = 0: (14)

Suppose the optimal transfer from age j to age i, denoted R�i , has been

attained. Totally di¤erentiating (12) we have

@�pk

@Ri
dRi +

@�pk

@�
d�+

@�pk

@pk
dpk = 0: (15)

If we evaluate the derivative around the optimal R�i , we know from (14) that

d� = 0. The coe¢ cient of dpk is negative by the second order condition.

Thus, we know that as Ri increases towards the optimum R�i , whether pk
moves in the same or opposite direction hinges on the sign of @�pk=@Ri.

Partially di¤erentiating (12) with respect to Ri, we get

@�pk

@Ri
= Ki

hpr+1�y�r
cr+1

+ � � �+ pr+1 � � � py�
cy

i
k � r

�
(pr+1 � � � pj)�y�i+1�ijg0(Ri)

cj(pi � � � pj)
+
(pr+1 � � � pj)�y�i+1�ijg0(Ri)

cj(pi � � � pj)
� I(k):

For r � k � i, I(k) = 1, the last two terms of the above expression cancel,
and hence the we see that @�pk=@Ri is indeed positive. This means that if

Ri increases towards its optimum R�i , then pk is also increasing.
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Following similar steps we see from (13) that for k � r + 1, pk moves in
the same direction as Ri around the optimum R�i if and only if @�pk=@Ri is

positive. Partially di¤erentiating �pk in (13) with respect to Ri, we have

@�pk

@Ri
= Ki

h�y�k+1
ck

+
pk+1�

y�k

ck+1
+ � � �+ pk+1 � � � py�

cy

i
k � r + 1

+
pk � � � pj�y�i+1�ijg0(Ri)

cjpk(pi � � � pj�1)
� I(k)�

pk+1 � � � pj�y�i+1�ijg0(Ri)
cj(pi � � � pj�1)

:

For r+1 � k � j�1, I(k) = 1, the last two terms in the above expression
cancel, and hence @�pk=@Ri is positive. As such, we know that pk and Ri
also move in the same direction for r + 1 � k � j � 1 as Ri moves toward
the optimum, R�i . Summarizing the above discussion, we have

Proposition 4: Consider a transfer Ri from age j to age i. As Ri increases

towards the optimum within the neighborhood of the optimal R�i that max-

imizes the �tness index, survival from age i to age j must increase.

What about the evolution of survival before age i? We show the results

for this case below. For k � i � 1, the �rst order condition for pk is similar
to that in (12), except that I(k) = 0 8k � i� 1:

�pk � [pr+1mr+1�
y�r + � � �+ pr+1 � � � pymy�]

� pkbkKk

hpr+1�y�r
cr+1

+ � � � pr+1 � � � py�
cy

i
; k � i� 1

Partially di¤erentiating the above expression with respect to Ri yields

@�pk

@Ri
= �Bij

where Bij is given in (11). We know that d�=dRi = 0, and hence Bij = 0,

around the optimum R�i . Thus, dpk=dRi; k � i � 1 is close to zero around
the optimum transfer. But we are able to say more about the change of pk
in the process when Ri increases toward R�i .
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Equation (15) says that for any dRi, the sign of dpk=dRi is the same as

that of [@�pk=@Ri]+[@�pk=@�] � [d�=dRi]. Partially di¤erentiating @�pk with

respect to �, using (12) to simplify the result, and substituting in the d�=dRi
formula from (10) and (11), we have

@�pk

@Ri
+
@�pk

@�
� d�
dRi

= �BijE

+ �Bij

h
1�

pr+2mr+2

�r+2
+ � � �+ (y�r�1)pr+2���pymy

�y
� F

(r+1)mr+1

�r+1
+ � � �+ ypr+2���pymy

�y
� F

i
; (16)

where

E � pkbkKk

h pr+2

cr+2�
r+2 + � � �

pr+2 � � � py
cy�

y

i
> 0;

and

F � pr+2 � � � pjg(Ri)(j � i)
cjpi � � � pj�1�i

:

It is easy to see that terms in the square brackets of (16) are positive. We

showed in section 4 that whenever the increase of Ri improves �tness, Bij
must be positive. Thus, if Ri moves toward the optimum R�i to improve

�tness, Bij > 0 must hold in the process, which means that dpk=dRi >

0 8k � i� 1. Thus, we have

Proposition 5: If an increased transfer from age j to age i improves �tness,

the survival probability up to age i must also co-evolve. As Ri approaches

R�i , @pk=@Ri ! 0; 8k � i� 1.

Why is it that Proposition 4 applies only to survival improvements be-

tween the age of receiving and the age of giving the transfer, while in Proposi-

tion 5 survival also improves at ages from birth to i? Improved survival from

age i to j always imparts an e¢ ciency gain when transfers are increased, so

it is selected either at the optimum or away from it. Increased survival from

birth to age i does nothing to conserve the investment in transfers, and in this

sense does not impart any e¢ ciency gains when transfers increase. However,
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it raises the number of births surviving to age i, and thus raises �; other

things equal. In the neighborhood of the optimal transfer, the e¤ect of this

increase in survivors to age i is exactly o¤set by a reduction in transfers per

o¤spring age i, so � is una¤ected, and the survival improvement to i is not

selected.

Once an adult is both past the age of providing transfers and no longer

fertile, her continuing survival makes no contribution, positive or negative,

to reproductive �tness. Mathematically, with respect to a transfer from age

j to age i, we can say nothing about the comparative statics with respect to

ps for s � j.

6 Extension and Discussion

6.1 General Optimal Transfers

So far we have discussed the impact of a transfer from one age j to one

age i, but of course transfers may be provided by adults of various ages, and

received by children of various ages. The feasibility constraint in (8) need not

hold for each (i; j) pair, but rather resources must be balanced over the life-

cycle. Speci�cally, let g(Ri) indicate the energy cost of all transfers received

by an individual at age i. The life cycle feasibility constraint is:X
i

� igi(Ri)�
�i =

X
j

�jpi � � � pj�1Tj��j;

similar to that in Lee (2003).

In general it will be optimal for adults of many ages to make transfers, and

then the marginal bene�t of transferring from each age must be equalized.

Likewise, the marginal bene�t at each age of receiving must be equalized. As

long as we have interior solutions, we should have a system of equations to

solve for such optimal transfers. Details will not be provided here, but one
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should note that the co-evolution result of transfers and longevity we derived

in the previous section would not be a¤ected by such complications.

6.2 Selection and Population Density

For a given set of the parameters ba, ca, da and �a, for all a, there will be

some optimal growth rate associated with the optimal life history, and only

by chance will it be zero. If the growth rate is positive, then nothing in our

model prevents population density from increasing without limit. It is beyond

the scope of this paper to consider the dynamic trajectory as density changes.

However, we will sketch the way density could be introduced into the model

and provided that density is at an unchanging equilibrium level, no change in

the analysis would be required. Density is measured as the total body mass

of the population per environmental resource. The main e¤ect of greater

density would be to make foraging more di¢ cult and thereby to reduce the

energy yield for a given body weight, that is to reduce the coe¢ cients �a. The

conversion of energy into body weight, fertility, or survival as expressed by

the other parameters would not be a¤ected to a �rst approximation, although

a more elaborate analysis might permit density to a¤ect mortality (through

contagion) and fertility (through limited breeding sites) directly, in addition

to the indirect e¤ect through energy production that is now included. So

long as the relationship is monotonic, its precise functional form need not

concern us. We can simply multiply �a at every age by some factor that

makes the corresponding optimal growth rate �� equal unity.

With this setup, suppose that lineage A equilibrates at some density DA

(that is, ��A(DA) = 1), whereas mutant lineage B has a positive growth rate

at that same density (��B(DA) > 1). Then we know that B will out-compete

A and be selected. In the analysis reported above, we can assume that the

population without transfers has equilibrated in this manner, and then the
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analysis indicates the conditions under which transfers would lead to more

rapid growth at this particular density (DA), and increased longevity at this

density. Lineage B, with transfers, will now grow until it equilibrates with

��B(DB) equaling 1:0 at some higher density DB. At this higher density,

lineage A would have a negative population growth rate, and go extinct.

7 Conclusion

The optimal life history approach seems well suited for exploring the pos-

itive selection of life history characteristics. Earlier studies have generally

assumed that the Euler-Lotka parameter (steady state growth rate) or the

net reproduction ratio (NRR) was the measure of �tness to be maximized

(Goodman (1982) and Cichon and Kozlowski (2000) are exceptions). Here,

rather than assume a measure, we have derived it from the goal of maximiz-

ing the number of living descendants at some future date. If that future date

is su¢ ciently distant, then we show that indeed the Euler-Lotka parameter

should be maximized. We are able to connect formally the optimization prob-

lem for an individual life history and the aggregate criterion of the growth

rate. We also �nd analytic expressions for the value of the contribution of

individuals by age and time period to the maximization, as a function of the

parameters constraining the production of energy and its uses. This enables

us to carry out a comparative static analysis of the e¤ects of these parame-

ters, in contrast to the previous literature which has explored optimal life

histories through numerical solutions.

Previous applications of the optimal life history approach have assumed

that the individual�s energy budget must balance at every age. Intergener-

ational transfers replace this instantaneous budget constraint with one that

holds over the life cycle. Here we model intergenerational transfers, and

ask under what conditions they would improve reproductive �tness and be
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selected. With transfers, a period of juvenile dependency with more rapid

growth and development can be funded by contributions from adults. We

consider what features of an initial life history without transfers would make

it more likely that intergenerational transfers would confer a selective advan-

tage. Factors favoring the selection of transfers include the ratio of adults

to juveniles, greater e¢ ciency of the old relative to the young in produc-

ing energy per unit of body size, and the e¢ ciency of juveniles in convert-

ing energy into body size. We also discussed the factors favoring transfers

to younger versus older o¤spring, and favoring transfers from older versus

younger adults. Because lower mortality favors the selection of transfers

from old to young, and because lower mortality coevolves with increased

transfers, we �nd the longevity and transfers should increase in a mutually

reenforcing way, as argued in Carey and Judge (2001) and Lee (2003).

When transfer behavior evolves, the founder of the mutant line actually

experiences a lower NRR than otherwise, because she foregoes some adult

fertility and survival in order to divert energy to caring for her existing o¤-

spring, although she received no such care in her youth. In this way she gets

the lineage started, and subsequent members of the lineage realize a higher

NRR as a result of her initial sacri�ce and the improved life history it made

possible. Of course, the inclusive reproductive �tness of the �rst individual

is also raised thereby, even though her own NRR is reduced.

A central �nding is that on the one hand, lower mortality makes the

evolution of transfers more likely, and on the other hand, if increased transfers

do evolve than longevity should coevolve. With transfers from adults to

juveniles, costly resources are diverted from immediate reproduction to care

for existing o¤spring, and concurrent life history investments in reducing

mortality serve to protect these investments.
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Mathematical Appendix

Part A

Lagging Vy;t one period, substituting it back into the previous age and

iterating until we reach equation Va;t, we have

Va;t =
�a

p1 � � � pa�1
V1;t�1 +

�a+1
p1 � � � pa�1

V1;t�2 + � � �+
�y

p1 � � � pa�1
V1;t�y+(a�1):

Given the solution V1;t = (�
�)t, we obtain (6) in the text. That Va;t de�ates

at a stable population growth rate for all ages is not surprising. The best

that the optimal life history can achieve is to grow at the maximum possible

intrinsic growth rate. Thus, at the optimum, although the value of the

contribution of an individual at di¤erent ages may be di¤erent, this value

de�ates at the same rate.

Part B

Let g(�) � maxx f(x; �). The envelope theorem (see Simon [1976]) says

that when x has an interior solution, dg=d� = @g=@� around the neighbor-

hood of the maximum, for the indirect e¤ect through x is absorbed by the

�rst order condition of x. Applying the envelope theorem to (2), we see that

V 0a;t = p
�
afV1;t�1=ca + p�a+1[V1;t�2=ca+1 + p�a+2(V1;t�3=ca+2 + :::]g: [A1]
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For the age-a problem, concerning the trade-o¤ between ma and za, we have

the following �rst order condition (in terms of economics, MRS equals price

ratio) for an interior solution:

p�aV1;t�1
p�ap

�
a+1fV1;t�2=ca+1 + p�a+2[V1;t�3=ca+2 + p�a+3(V1;t�4=ca+3 + :::)]g

=
ca
da
:

In the steady state, V1;t is a constant of power � for all t, as shown in the

text, and so the above expression can be further rewritten as

p�a�
t�1

p�ap
�
a+1f�t�2=ca+1 + p�a+2[�t�3=ca+2 + p�a+3(�t�4=ca+3 + :::)]g

=
ca
da
: [A2]

Canceling p�a in the numerator and the denominator of [A2], we see that

both sides of [A2] are not dependent on any age-a choice variable. Thus,

expression [A2] could hold only by accident in a steady state, which in turn

implies that ma and za cannot be interior solutions at the same time.
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