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Abstract

The generalized HIV/AIDS epidemic is devastating African families. Understanding how

epidemiological patterns are translated into aggregate demographic outcomes is an im-

portant task for addressing this crisis of care. Using methods from stable population

theory and AIDS-decremented model life tables for Africa, I analyze the effect of different

mortality and fertility schedules on the probability of a child losing her mother. In high

mortality environments, the probability that a girl will die before reaching some age a is

non-negligible. I develop a method to estimate the probability of orphanhood conditional

on surviving to a based on the analysis of first passage times of a Markov chain. Mortal-

ity decrements in the characteristic AIDS shape have a large impact on the probability

of maternal orphanhood. Fertility (both overall level and parity-specific subfertility), in

contrast, has a small effect on orphanhood probability. Despite the severe limitations

of a one-sex model using stable population identities, this analysis provides important

qualitative insights into the demographic processes that link HIV disease and aggregate

demographic outcomes. I suggest possibilities for future work in which the assumptions

of the present analysis are relaxed.



1 Introduction

The generalized HIV/AIDS epidemic in Sub-Saharan Africa has led to a an orphanhood

problem of crisis proportions. According to the recent UNICEF report on the state of the

orphanhood crisis in Africa, HIV prevalence among adults ages 15-49 is currently 7.3%

in eastern and 19.2% in southern Africa, with corresponding orphanhood prevalence of

12% and 17% of all children 0-14 respectively. AIDS claimed an estimated 2.2-2.4 million

deaths in 2003. Despite some progress toward control of the epidemic (Stoneburner and

Low Beer 2004), the year 2003 nonetheless witnessed an estimated 3 million new HIV

infections in Sub-Saharan Africa.

Caring for Africa’s orphaned children represents a major policy challenge for the 21st

century (Preble 1990). Demographic projections suggest that by 2010, from 20 to 37

per cent of children under the age of 15 in Sub-Saharan Africa will have lost at least

one parent (Foster 2002). In addition to the humanitarian crisis, the generation of so

many orphans creates substantial negative structural consequences for the countries of

Sub-Saharan Africa. Orphanhood carries a multitude of negative social outcomes. Chil-

dren orphaned by AIDS are often less likely to be enrolled in school, have lower age at

sexual debut, greater morbidity, higher delinquency rates, greater illiteracy and higher

unemployment as adults (Walraven et al. 1996; Foster and Germann 2002; Bicego et al.

2003). In addition, AIDS mortality among parents frequently leads to the dissolution of

households, creating social and geographic instability (Urassa et al. 2001).

Two important questions that arise in the context of the current orphan crisis in Sub-

Saharan Africa. First, what is the probability is that a child will be orphaned at a given

age? Second, what is the probability that a child will become an orphan before reach-

ing adulthood? Empirical data on orphanhood have recently become available through
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the Demographic and Health Surveys, providing estimates of the number of orphans for

various ages. While these data are of vital importance, understanding the social and

demographic processes surrounding orphanhood requires a model relating orphanhood to

schedules of demographic events and the social, epidemiological, ecological, and economic

forces that drive them. On the recent decline of the use of models in demographic re-

search even as high quality data become more abundant Coale and Trussell (1996, 484)

write, “while the trend toward the use of sophisticated statistical models appropriate for

the problem being analyzed and the data that are available is healthy, the trend toward

accepting demographic survey data at face value is not.”

While the consequences of orphanhood are felt biosocially and economically, the gen-

eration of orphans is fundamentally a demographic process. As originally elucidated by

Lotka (1931), the probability that a child will have a living parent is a function of the

prevailing age-specific schedules of mortality and reproduction. This suggests that sub-

stantial insight into the orphanhood problem can be gained by analyzing – both analyti-

cally and through simulation – the consequences for orphanhood of changing demographic

schedules. In this paper, I use the methods of the demography of kinship to explore the

effect of AIDS mortality in particular on the probability of maternal orphanhood under

a generalized AIDS epidemic.

2 Methods

2.1 Data

Mortality I used INDEPTH HIV-decremented model life tables to explore the effects

of AIDS-related mortality on the probability of orphanhood (INDEPTH Network 2002).

The INDEPTH model life tables provide the most complete and accurate record of the
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mortality experience in Africa currently available.

The AIDS-decremented model life tables were constructed using component mortality

models typically employed in the construction of model life tables (e.g., Coale et al. 1983).

Let C be a k×l+1 matrix of loadings of the k ages on the first l components of a principle

components analysis, with a leading column of ones. Define m = logit(nqx) for x ∈ 0 . . . k.

A model life table is defined by

m = Ca

where a is an l + 1× 1 vector of coefficients.

In general, the coefficients are estimated by regressing empirically-derived values of

logit(nqx) on C.

The INDEPTH model life tables depict seven general mortality patterns. For the

present paper, the most relevant are patterns 1 and 5. Pattern 1 resembles the Coale-

Demeny North model life table in that it is characterized by high infant and childhood

mortality. The populations that primarily contribute to this pattern are from West Africa,

where endemic malaria is a significant source of under-10 mortality. The INDEPTH Pat-

tern 5 life tables correspond to regions in eastern and southern Africa with high HIV/AIDS

prevalence, and are characterized by a substantial mortality bulge beginning in early

adulthood.

The AIDS-decremented life tables are generated by creating a model life table with an

underlying pattern similar to the pattern 1 model. Excess mortality due to AIDS is added

by regressing the difference of model 5 and model 1 life tables for the same life expectancy

at birth (
◦
e0)against the first 15 principal components from the PCA. Let the coefficients

of this regression be d′. The AIDS-decremented life tables are then constructed by:

3



m = C(a + αd),

where α is a scale parameter which determines the extent to which excess AIDS mortality

is added.

Figure 4 plots the life table survivorship function l(x) against age for two AIDS-

decremented mortality families,
◦
e0= 45 and

◦
e0= 60, the lowest and highest life expectancy

families of the published model life tables (INDEPTH Network 2002).

Fertility As a baseline for comparison, I use the synthetic natural fertility schedule of

Coale and Trussell (1978), ultimately derived from Henry (1961). Using the parametric

model fertility schedules of Coale and Trussell (1974), this pattern of age-specific fertility

can be manipulated to achieve both different levels of overall fertility and deviations from

natural fertility, measured as the extent of parity-specific subfertility. The Coale-Trussell

model expresses the realized age-specific fertility rates as a function of a synthetic natural

fertility schedule and two parameters M and m. These parameters characterize the overall

level of marital fertility and the degree of departure from natural fertility respectively. The

realized age-specific fertility for each age a between ages 20 and 44 is

ra = naMemva (1)

where va is a set of empirically derived deviations presented in Coale and Trussell (1974)

and updated in Coale and Trussell (1978), and na is the synthetic natural fertility schedule

derived by Coale and Trussell from sources in Henry (1961).

The values of M and m are typically estimated by regressing log(ra/na) against va.
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log(M) and and m are the intercept and slope, respectively, of this regression. Fertility

rates below age 20 and above 44 are interpolated between the zero and the values for these

these ages. This method, while somewhat ad hoc, typically produces sensible values (Coale

and Trussell 1974, 1978). Alternatively, the parameters can be estimated using Poisson

regression (Bronström 1985), where the number of births per age group is regressed against

va using log(naEa) as an offset (where Ea is the number exposed in age-class a). For the

present study, variations on fertility schedules can then be produced by systematically

varying M and m.

For this analysis, I focus on values of M approximately equal to 0.5. This choice

reflects empirical patterns of fertility derived from DHS surveys of Sub-Saharan Africa

from 1991-2002. The ASFR schedules from 43 DHS surveys are plotted in figure 1, along

the the Coale-Trussell synthetic natural fertility schedule and the mean of the 43 schedules.

The estimated value of M for the mean using the OLS method described in Coale and

Trussell (1974) is 0.49. Because of the likely effects of HIV disease on the m parameter in

the Coale-Trussell model (see Discussion), I focus particularly on the effect of variation

in parity-specific subfertility on the probability of orphanhood.

I restrict attention to the female segment of the population. This decision reflects the

general lack of model schedules of male age-specific fertility and the technical difficulties

associated with the two-sex problem for kinship studies (Reeves 1987). I will take up the

limitations imposed by the assumption of female demographic dominance in the Discussion

and suggest some possible solutions.

2.2 Mathematical Demography of Kinship

Let l(x) represent life-table survivorship – the probability that a girl will survive to exact

age x, l(x) = exp(−
∫ x
0 µ(a)da), where µ(a) is the instantaneous mortality rate at age a.
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From this elementary life table function, the probability that a girl age a will have a living

mother is simply l(x + a)/l(x), where x is the age of the mother when the girl was born.

To get the probability that a randomly-selected girl age a will have a living mother, we

must integrate l(x + a)/l(x) across all possible ages of mothers. This integral is weighted

by the fraction of births attributable to mothers of each age, W (x). Following Goodman

et al. (1974), I refer to the probability that a girl age a’s mother being alive as M1(a):

M1(a) =
∫ ω

α

l(x + a)

l(x)
W (x|t− a)dx, (2)

where W (x|t− a) is the age structure of mothers at time t− a.

Under the stable population assumptions of constant demographic schedules and zero

net migration, the fraction of mothers age x ceases to depend on t − a, and the fraction

of births attributable to women age x is:

W (x) = e−rxl(x)m(x), (3)

where m(x) is the fertility rate at age x, and r is the instantaneous rate of increase,

which is given by the unique positive real root of the Euler-Lotka solution to the renewal

equation,

1 =
∫ ω

α
e−rxl(x)m(x)dx. (4)

Substituting the stable population weights for the distribution of mothers into equa-

tion 2, we get

M1(a) =
∫ ω

α
e−rxl(x + a)m(x)dx. (5)
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This result was first derived by Lotka (1931) and was expanded upon by Goodman

et al. (1974) to examine other kinship relationships as a function of demographic schedules.

2.3 Numerical Methods

While the mathematical theory of kinship (Goodman et al. 1974; Keyfitz 1985) is devel-

oped in a continuous-time framework, demographic data typically come from abridged

life tables with discrete age intervals. I graduated the five-year interval demographic data

using interpolating splines, and solved the Euler-Lotka equation for r using numerical

minimization of the squared error. I then numerically integrated equation 5 using the

graduated data by means of adaptive quadrature.

Software to estimate the probability of having a living mother given schedules of

age-specific mortality and fertility was originally written by Mark Handcock in R and is

available on request.

2.4 Conditional Orphanhood Probability

The probability of maternal orphanhood calculated through equation 3 represents the un-

conditional probability of a girl having a living mother. In high-mortality environments,

there is a non-negligible probability that a girl will die before reaching age a, regardless

of the particular value of a. The calculation of the conditional probability that a new-

born child will become orphaned before attaining adulthood requires the combination

of three related, but usually distinct domains of demographic theory: (1) projection of

structured population, (2) analysis of Markov-chains, and (3) stable population theory

and the mathematical demography of kinship, discussed above.
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2.4.1 Projection of Structured Population

I model the female component of a general population divided into k five-year age-classes.

The projection matrix, A, is a k × k matrix with survival probabilities Px = 5Lx+5/5Lx

along the sub-diagonal, age-specific effective fertilities along the first row, and zeros else-

where. To study the dynamics of orphanhood, however, we only need the survival com-

ponent of the Leslie matrix (i.e., the subdaigonal).

2.4.2 Markov Chain

The projection matrix resembles discrete-time Markov transition matrix (Norris 1997),

and is easily converted to one. Following Caswell (2000), the population projection matrix

can be usefully decomposed into its fertility and survival components:

A = T + F (6)

In the terminology of Markov chains, all of the states of a demographic projection

matrix are “transient” ones. The transformation of the standard projection matrix to a

Markov transition matrix involves adding absorbing states and the transition probabilities

thereto. These absorbing states typically include death, but may also include some other

demographic outcomes of interest.

I consider m = 3 absorbing states: orphanhood, death, and attaining adulthood. For

simplicity and compatibility with standard abridged life tables, I define “adulthood” as a

girl reaching her 20th birthday. Define a new, k + m× k + m matrix P

P =

 T 0

M I

 , (7)
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where T is the k× k survival component of the original projection matrix, M is an m× k

submatrix containing the transition probabilities into the absorbing states, 0 is a k ×m

matrix of zeros, and I is an m×m identity matrix. This new matrix is column stochastic

with
∑

j pij = 1, where pij is the ijth element of matrix P.

A vector of age-specific conditional probabilities of absorption in the mth absorbing

state is given by the mth row of the m× k matrix:

B = M(I−T)−1. (8)

where this time I is a k × k identity matrix.

In general, a child within each age class i can do one of three things: (1) survive

into the next stage (pi), (2) die within the age class (µi), or become orphaned within

the age class (ωi). These three transitions uniquely define the possible events that can

happen to a child. Thus, pi + µi + ωi = 1. pi is a standard life table quantity (i.e.,

l(i + 1)/l(i)), and µi follows from pi and ωi. What remains is to determine the values of

ωi. Equation 5 provides the probability that a girl age a will have a living mother. Its

complement therefore provides precisely the transition probability needed to complete the

Markov transition matrix ωi = 1 − M1(i + 2.5), the complement of equation 5 centered

on the age class.

3 Results

Analytical Observations As noted by Keyfitz (1985), a constant addition k to the

age-specific mortality rate will increase the logarithm of the probability of orphanhood in

a linear fashion since addition of a constant decrement k to the force of mortality µ(x)

between ages x and x + a reduces M1(a) by the fraction e−ka.
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The main impact of fertility on the probability of orphanhood is through the net mater-

nity function. Keyfitz (1985) notes that when the net maternity function is concentrated

around the mean age of childbearing κ, M1(a) ≈ l(κ + a)/l(κ).

Taking logarithms of both sides of this expression and differentiating with respect to

x yields

1

M1(a)

dM1(a)

dκ
= − [µ(κ + a)− µ(a)] . (9)

The effect of a change in the mean of the net maternity function is most clearly seen

by re-writing this expression in discrete terms.

∆M1(a)

M1(a)
≈ − [µ(κ + a)− µ(κ)] ∆κ.

If the mortality rate increases between the mean age of the net maternity function κ

and κ + a, the proportionate change in M1(a) will be negative. Furthermore, increases in

κ will be negatively related to the proportionate change in M1(a).

In general, l(κ + a)/l(κ) overestimates the value of M1(a) calculated more precisely

from equation 5 because of the concavity of the survivorship function. Analysis of this

discrepancy yields considerable insight into understanding how changes in net maternity

affect the probability of orphanhood. Expand l(x + a)/l(x) around κ using a Taylor

polynomial. Denote the derivative of l(κ + a)/l(x) at x = κ by [l(κ + a)/l(κ)]′, and the

variance of κ as σ2. Keyfitz (1985) shows

M1(a) ≈ l(κ + a)

l(κ)
+

σ2

2

[
l(κ + a)

l(κ)

]′′

. (10)

The probability that a girl will have a living mother is thus strongly influenced by

10



three factors. First is the mean age of childbearing. Higher κ will mean higher probability

of orphanhood. Second is the degree of concavity of the survivorship function. Keyfitz

(1985) suggests that in most cases d2l(x)/dx2 < 0 for almost the entire range of x, making

the second term less than one. The more negatively concave this curve is, the higher

the probability of orphanhood and the more the actual value of M1(a) is reduced from

l(κ + a)/l(κ). The effect of increasingly severe AIDS-decrements to the model life tables

makes the second derivative of l(x) more negative. The degree of negative concavity is

related to the base
◦
e0, with lower life expectancies having more negatively concave shapes

through early adulthood (and more positively concave shapes in later adulthood). Third,

the greater the variance in the net maternity function, the lower the value of M1(a) relative

to l(κ + a)/l(κ).

While the effect of the latter two factors is typically small (Keyfitz 1985), when l(x)

changes very rapidly in the prime childbearing years, the effects will be considerably

larger. This is exactly what happens with the addition of a major mortality decrement

incident in childbearing years.

Probability of Maternal Orphanhood Under Model Schedules Figure 6 presents

the probability of a girl being a maternal orphan at age a under two
◦
e0 model life tables,

with the four values of parity-specific subfertility depicted in figure 5. The two model life

tables are for
◦
e0= 45 and

◦
e0= 60, with no AIDS decrement. The effect of varying parity-

specific subfertility is relatively small. Figure 7 presents the effect on the probability of

orphanhood of adding AIDS-characteristic mortality to the population. In the most severe

mortality scenario (
◦
e0= 45 with 20-year AIDS decrement), the probability of orphanhood

rises rapidly so that a young woman of 20 has less than a one-in-five chance of having a

living mother.
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The effects of the overall level of fertility (M in the Coale-Trussell model schedule)

are small. Figure 8 shows the results of changing the level of fertility to M = 0.33 from

M = 0.5, again with the five levels of the parameter m. The two different levels of fertility

yield essentially indistinguishable curves in monochrome. Color plots reveal very small

differences in the M1(a) curves against daughter’s age. The probability of orphanhood

changes little with the overall level of fertility because the shape of the net maternity

function remains constant for different values of M and the mean of the net maternity

function κ does not change with a change in M . Reduced level of fertility increases

the unconditional probability of orphanhood at all ages since it raises the mean age of

childbearing slightly.

Note that all these probabilities are unconditional and do not account for the very real

possibility of the girl’s death before age a.

Conditional Probability of Orphanhood Figure 9 presents the baseline conditional

probabilities of orphanhood from the
◦
e0= 45 and

◦
e0= 60 model life tables with no AIDS

decrements. Figure 10a displays the striking impact the AIDS mortality pattern has on

the conditional probability. The decrement of five years in the AIDS pattern from the

◦
e0= 45 model life table nearly doubles the conditional probability of orphanhood at all

ages. The conditional probability that a girl who survives to age a will have lost her

mother by age 20 is approximately 25% for the highest mortality model life table (i.e.,

◦
e0= 45) in the absence of additional AIDS mortality. With the subtraction of five years

in the AIDS pattern from
◦
e0, this probability jumps to 42%.

Figure 10 presents the effect of the various AIDS-related decrements. As the AIDS

mortality grows more severe, the conditional probability increases though a girl’s tenth

birthday.
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As with the unconditional probabilities, the effects of fertility differentials are small

compared to the effects of mortality. The overall level of fertility has little impact on the

conditional probability of orphanhood. The exercise of parity-specific control (or simply

parity-specific subfertility) similarly has little impact on the probability – conditional or

unconditional – of orphanhood. This contrasts to analyses looking in the other direction

with respect to the life cycle. The probability that a parent will have a living child in a

population characterized by high AIDS mortality is strongly influenced by parity.

AIDS Mortality and Orphanhood Figure 11 plots the effect of AIDS mortality

on the unconditional probability of orphanhood for two model life tables with equal life

expectancy at birth. The solid line represents the unconditional probability of orphanhood

for a
◦
e0= 45 model life table with no AIDS mortality decrement, while the dotted line plots

the same probability for
◦
e0= 60 with a 15 year AIDS-decrement. The lines rapidly diverge

through childhood, reaching a maximum difference in early adulthood. The probability

that a 50 year-old woman with a living mother will experience the loss of her mother, not

surprisingly, is not affected by AIDS mortality.

In figure 12, the same two model life tables are input into equation 8. The remark-

able implication of this plot is that AIDS mortality more than doubles the conditional

probability that a girl will lose her mother before reaching her 20th birthday (Jones 2004).

4 Discussion

AIDS-induced mortality has a substantial impact on the probability that a girl will become

orphaned. This is not surprising since the preponderance of AIDS mortality strikes during

the prime reproductive years. In contrast, the effects of fertility on the probability of

orphanhood are modest. In high mortality environments, the probability of a girl dying
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before reaching any given birthday is not ignorable. By analyzing the process in terms of

the first passage time of a Markov chain, I have shown how to calculate the probability of

orphanhood before adulthood conditional on surviving to a. Analysis of the conditional

probabilities of orphanhood paints a grim picture for children in Sub-Saharan Africa.

Cumulative survivorship enters the expressions for the probability of orphanhood

(equations 5 and 8). However, two life tables with exactly the same life expectancy

at birth – one with the AIDS pattern of mortality and one without it – produce very

different age profiles of orphanhood. These differences are particularly acute for the con-

ditional probability of orphanhood (figure 12), in which the conditional probability for

the AIDS-decremented model life table is more than double that of the non-decremented

life table with the same
◦
e0. Not surprisingly, AIDS generates more orphans. What is

perhaps surprising is the magnitude of the impact the AIDS-pattern of excess mortality

has when compared to an equally high-mortality model life table with effectively no AIDS

mortality (Jones 2004).

While the Lotka equation for orphanhood probability (equation 5) is an extremely

valuable tool, the probabilities it generates must be taken in context. The risk at birth

of orphanhood must account for the fact that many children – particularly in the highest

mortality populations – will die before reaching maturity. The methods described here to

calculate conditional probabilities from the first passage of the Markov chain are therefore

an important contribution to understanding the social impacts of the generalized AIDS

epidemic in Africa.

In addition to the many obvious negative consequences for children of being orphaned,

the extremely high probabilities of orphanhood have downstream social consequences as

well. The more children without parents in the f1 generation, the more children will

lack grandparents in f2 generation (Jones and Morris 2004). As grandparents are the
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primary caregivers for orphans in many parts of Sub-Saharan Africa, a general lack of

grandparents could potentially leave a care vacuum for future generations of children at

risk of orphanhood due to the generalized AIDS epidemic.

The two limitations of the analyses presented in this paper are: (1) the one-sex model,

and (2) the use of stable population identities in calculating frequencies of kinship. One

obvious solution to these problems is demographic microsimulation (Wachter 1987). Mi-

crosimulation should be a particularly valuable tool for looking at collateral kin relations

(e.g., aunts, uncles, cousins). Keyfitz (1985) notes that equations for lineal kin frequen-

cies (e.g., equation 5) are quite robust to violations of their underlying assumptions, while

those for collateral relatives are not. Collateral kin are of central importance in many kin-

ship and inheritance systems. For example, paternal aunts are the preferred caregiver for

orphans in Zimbabwe (Foster et al. 1995).

Microsimulation should facilitate the calculation of a wide variety of important living-

kin frequencies, particularly those that cross lineages (i.e., from mother’s to father’s line

and vice-versa), however, the general absence of male fertility schedules will still present

challenges.

The value and limitations of the stable population model have been widely discussed.

The stable population relationships that I employ in this paper do not represent mea-

surements per se. Rather, they elucidate the relationship between demographic schedules

and a variety of outcomes. The great value of closed-form analytic expressions such as

those of the stable population model is that they provide qualitative insight from analysis.

Complex behavior can be simulated, but insight can elude the investigator. While the

restrictive assumptions that are typically required to produce an analytical model hinder

their realism, the payoff in terms of understanding makes the development and use of

such models well the effort (Keyfitz 1975; Coale and Trussell 1996; Lee 2001). Similarly,
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empirical data are of fundamental importance for demography, and science in general.

However, data collected without a model to support them can be difficult to interpret

and, more problematic, misleading (Keyfitz 1975; Coale and Trussell 1996). As Keyfitz

(1985: 409) succinctly described it: “no model, no understanding.”

A problem with the stable population model is the assumption of constant demo-

graphic schedules. Patterns of age-specific mortality and fertility are clearly changing in

Africa. The analysis I have presented here suggests the likely effect of different types of

demographic change. For the foreseeable future, AIDS mortality is likely to get worse in

much of Southern Africa (Zimbabwe, Zambia, Botswana, South Africa, Namibia, Mozam-

bique, and Malawi), while countries in eastern Africa, notably Uganda, have shown small

improvement (Stoneburner and Low Beer 2004). Mortality, for the most part, has an

unambiguous effect on orphanhood. Increases in mortality after age at first parturi-

tion will increase the number of orphans. Mortality correlations are likely to arise due

to HIV-infection. More infected mothers means more infected children due to vertical

transmission as well as more deaths because infected mothers are unlikely to be able to

fully provide the quality of care required to successfully raise a child in an already high-

mortality environment (Lindblade et al. 2003). However, since mortality enters equation 5

only through the l(x) function, increased mortality at any age will decrease the fraction

of girls in the stable population with living mothers. These considerations suggest that

the orphanhood probabilities based on stable population identities I have presented in

this paper may represent best-case estimates.

The effects of changing fertility are less clear cut. Gregson et al. (1999) have presented

evidence for fertility reduction with HIV infection. In terms of the Coale-Trussell model

used in this paper to model fertility, such changes are most likely to be seen in the second

parameter, m, which models the effect of parity-specific fertility control. One criticism
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of the Coale-Trussell model fertility schedule has been that m, in addition to its lack of

ready interpretability, can be confounded by factors other than parity-specific control. Of

particular interest is the onset of permanent sterility. The effect on fertility of sexually-

transmitted infections resembles that of parity-specific control (Harpending and Draper

1990).

HIV disease potentially affects fertility through several pathways. Women screened

in ante-natal clinics have substantially lower HIV prevalence than the general population

(Gray et al. 1998; Zaba et al. 2000). Increased rates of fetal loss are seen beginning with

HIV seroconversion (Zaba and Gregson 1998; Ross et al. 2004), with the rate progressing

with the disease. With progression to AIDS, sexual activity is greatly reduced and fertility

is further curtailed (Ross et al. 2004). There is also a potential of behavioral selection

effects on low fertility, as low gravidity is strongly associated with subsequent low fertility

with HIV disease (Ross et al. 1999).

The classic pattern of subfertility induced by sexually transmitted infections (STI)

in non-contracepting populations resembles the exercise of parity-specific control. As

a woman ages, both her parity and her cumulative hazard of experiencing secondary

sterility increase. While there are significant differences – both in terms of epidemiology

and pathogenesis – between HIV disease and the classic sterilizing STIs (e.g., gonorrhea,

syphilis), the cumulative nature of the hazard should nonetheless exert the parity-specific

control mimicry that makes identifying the onset of contraception using the Coale-Trussell

model problematic (Ewbank 1993; Okun 1994; Okun et al. 1996).

Somewhat unlike the classic sterilizing STIs, HIV disease will also exert an impact on

the level of fertility. One of the largest risk factors for HIV positivity in ante-natal clinics

is age at sexual debut. If the fertility-reducing effects of increased fetal loss occur from

the outset of HIV infection, as suggested by (Ross et al. 2004), then HIV should have a
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real impact on level of fertility.

The analysis I have presented here indicates that the both parameters M and m in

the Coale-Trussell model have negligible impact on the probability of orphanhood when

compared to µ(x), the age-specific force of mortality. Thus, although HIV disease has large

effects on fertility, unless these effects specifically change the shape of the net maternity

function (and, in particular, its mean, κ), they will have little impact on the process of

orphanhood when compared to the effect of changing mortality rates.

The probability of orphanhood will increase with κ. The location of the net maternity

distribution can be changed fundamentally in two ways: (1) through survivorship and

(2) through fertility. Improving mortality conditions will weight the net maternity distri-

bution more toward younger ages, reducing the probability of orphanhood in daughters.

In contrast, delaying reproduction – without substantially improving AIDS mortality –

will shift net maternity to older ages, increasing the probability of orphanhood. Though

typically associated with later net maternity, delayed age at sexual debut, because it is

associated with lowering risk of HIV infection (Ferry et al. 2001; Drain et al. 2004), will

in all likelihood reduce the probability of orphanhood.

Children frequently experience differential outcomes depending upon whether they are

maternal, paternal, or double orphans. Loss of a father has been documented to impart

greater economic hardships in some areas (Lindblade et al. 2003). Very young children

typically do poorly when they lose their mother (Masmas et al. 2004).

The unconditional and conditional probabilities of orphanhood have different uses in

application to the orphan crisis in Sub-Saharan Africa. In terms of planning for capacity-

related responses, the unconditional probability of orphanhood is key since this represents

a snap-shot of the number of orphans of a given age at a given time. In terms of thinking

about the social impact of the HIV/AIDS epidemic, the conditional probability is perhaps

18



more useful.

Understanding the aggregate effects of HIV disease on social outcomes is essential for

formulating sound policy to help children affected by the generalized HIV/AIDS epidemic

in Sub-Saharan Africa. While empirical studies of the frequency of orphanhood are of

immense value, well-informed policy requires the understanding of process that models

provide. The models I have presented in this paper represent a first step toward an under-

standing of the interaction of epidemiology, demographic processes, and social outcomes

that characterize the generalized HIV/AIDS epidemic of Sub-Saharan Africa.
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Figure 1: Age-specific fertility rates for 43 DHS surveys in Sub-Saharan Africa, 1991-2002.
The synthetic natural fertility schedule of Henry (1961) and Coale & Trussell (1974, 1978)
is indicated in red.
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Figure 2: Model Age-specific fertility rates for nine different levels of natural fertility (no
parity-specific control).
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Figure 3: Model Age-specific fertility rates for twenty different patterns of deviation from
natural fertility at one overall fertility level, M = 0.5.
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Figure 4: AIDS decremented model survivorship schedules. Left panel: INDEPTH
◦
e0= 45

AIDS-decremented model life tables with decrements, 0, 5, 10, 15, and 20 years from
◦
e0.

Right panel: INDEPTH
◦
e0= 60 with same AIDS mortality decrements
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Figure 5: Model age-specific fertility rates used. Left panel: Coale-Trussell model fertility
schedule with M = 0.5 with parity-specific control m = (0, 0.2, 0.6, 1.0, 1.4). Right panel:
M = 0.33, same values of m
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Figure 6: Orphanhood probabilities for baseline mortality,
◦
e0= 45.
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Figure 7: Orphanhood probabilities for AIDS mortality decrements, of 5, 10, 15 and 20

years from
◦
e0= 45 and fertility schedules with level M = 0.5.
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Figure 8: Orphanhood probabilities for AIDS mortality decrements, of 5, 10, 15 and 20

years from
◦
e0= 45 and fertility schedules with level M = 0.33.
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Conditional Probability of Orphanhood: Baseline

Figure 9: Conditional orphanhood probabilities for baseline mortality,
◦
e0= 45 (upper

curves) and
◦
e0= 60 (lower curves).
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Figure 10: Conditional orphanhood probabilities for AIDS mortality decrements, of 5, 10,

15 and 20 years from
◦
e0= 45 (upper curves) and

◦
e0= 60 (lower curves).
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Figure 11: Impact of AIDS mortality on the unconditional probability of orphanhood.

Both curves represent probabilities for a
◦
e0= 45. Solid curve:

◦
e0= 45 family model life

table and no AIDS decrement,
◦
e0= 60 model life table with 15-year AIDS mortality

decrement.
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Figure 12: Impact of AIDS mortality on the probability of orphanhood conditioned on

surviving to a. Both curves represent probabilities for a
◦
e0= 45. Solid curve:

◦
e0= 45

family model life table and no AIDS decrement,
◦
e0= 60 model life table with 15-year

AIDS mortality decrement.
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