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  Reducing mortality is widely taken as a social development target; its side 

effects have rarely been mentioned. On the basis of multistate model, this paper 

introduces necessary measures, and illustrates that mortality decline raises disability 

risk. This effect implies living longer does not lead to living healthier, and requires 

thinking about how to reduce disability risk. To show the effect of mortality decline 

raising disability risk in a controllable way, this paper simulates consequences of 

hypothetical mortality declines, using the US data.   

  

Living healthier is often accompanied by living longer, but living longer may 

neither come from nor lead to living healthier. Common people could tell the 

difference between living longer and healthier from observing someone was sick in 

bed long before death while others did not, and demographers employ life expectancy 

(LE) and active life expectancy (ALE) measures to gauge the difference between 

simply living longer and living longer in robust health. 

 

Several decades ago, Sullivan (1971) introduced a calculation for ALE, which 

is now termed the prevalence method. In this method, age-specific death rates 

(denoted as m(x) at age x) are used to produce an ordinary life table. The person-years 

lived in each age group is then divided into active and disabled statuses according to 

the disabled proportion (d(x) at age x) which can be found in census data from many 

countries (see Weeks, 1999). Subsequently, the total-person-years over each age are 

obtained for both active disabled statuses. Dividing the active total-person-years over 

a certain age by the number of survivors at this age, the result is the prevalence ALE, 

and the difference between LE and ALE is therefore the disabled life expectancy 

(DLE). 

 

Distinguishing ALE from LE is a significant progress, especially since rising 

LE is widely interpreted as socioeconomic success (e.g., the human development 

index, www.undp.org/report). Examining the US trends in the 1970s, Crimmins, Saito 

and Ingegneri (1989) showed that the most of increase in LE was DLE, and thus 

provided perhaps the first national-level evidence that living longer does not always 

mean living healthier. Consequently, monitoring the change of ALE is becoming a 

demographic routine (e.g., Crimmins, Saito and Ingegneri, 1997; Cambois, Robine 

and Hayward, 2001), and ALE is included among national health goals of the US 

(Office of Disease Prevention and Health Promotion. 1991).  

 

Problems of the prevalence ALE and DLE, however, should not be ignored. In 

specific, the disabled proportion (d(x)) does not measure the disability risk at the time 

of corresponding census, because disabled individuals aged x were disabled not only 

at census but also earlier times. Thus, comparing prevalence ALE between times or 
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regions is problematical. Furthermore, the relationship between mortality and 

disability cannot be discussed since the fundamental measure of disability risk, which 

should be independent of mortality, is not yet defined. Therefore, although the effect 

of mortality decline raising disability risk could be vaguely sensed in occasions where 

DLE increased faster than did LE, this effect cannot be investigated in a controllable 

way. 

 

 

The fundamental measure of disability risk and the multistate 

stationary population 
 

 Before defining the fundamental measure of disability risk, the purpose and 

data availability should be discussed. In order to compare disability risks between 

times, cross-section data are relevant. Besides, cross-section data are likely to be 

available at national level. Limited to cross-section data, an individual's information,  

such as gender and age as well as whether or not disabled, could refer only to a 

'current' state. In this situation, a disabled individual's return to active status is 

canceled by an active person becoming disabled at the same age, because whether an 

active person was in disabled status prior to the 'current' state cannot be identified. 

Thus, it is the number of net transitions from active to disabled status, defined by the 

number of active-to-disabled transitions minus the number of disabled-to-active 

transitions, that should be modeled.     

 

The fundamental measure of disability risk can be defined in the way similar 

to age-specific death rate if the onset of disability is viewed as analogical to death. 

Dividing the number of active-to-disabled net transitions in age group (x,x+1] in a 

calendar year by the average number of active population in this age group and year, 

the result is the active-to-disabled net transition rate, which is denoted as t(x). The 

t(x) could be obtained from census, if since when a disabled person was disabled were 

asked. Before such ideal information becomes available, t(x) can also be estimated 

through well examined assumptions (e.g., Li, 2004). The t(x) measures the risk of 

becoming disabled at age x under the condition of surviving to age x in active status, 

and is independent of mortality. As a vector, however, t(x) is incomparable between 

different times and regions. For example, comparing to an earlier period, the value of 

t(x) in a later period may be larger at a younger age but smaller at an older age, and 

thus we cannot evaluate which period has the higher disability risk. This problem is 

similar to evaluating mortality when age-specific death rates compose an 

incomparable vector, and the stationary population is used as a solution.      

  

To model a population that includes two status, death rates of each status, 

namely ma(x) for active and md(x) for disabled, need to be introduced. Similar to t(x), 

ma(x) and md(x) could be obtained if the active or disabled status of each death in 

vital statistics were identified by matching with what is record in earlier census. 

Before such matching is made, ma(x) and md(x) can also be estimated through well 

examined assumptions (e.g., Li, 2004).  

 

For convenience, at any time and at the starting age s, the numbers of active 

and disabled population can be set as [1-d(s)] and d(s), respectively. Assuming that 

t(x) and ma(x) are constant over time and across age group (x, x+1], and viewing 
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[t(x)+ma(x)] as the 'death rate', the stationary state of active population, with la(x) 

survivors at age x, will be reached from any initial state in the way similar to reaching 

an ordinary stationary population: 

 

 

 After the active population becomes stationary, the number of becoming 

disabled in a subinterval of (x, x+1], namely (z, z+dz], is constant over time and can 

be written as t(x)la(z)dz. The number of their surviving to age (x+1) is therefore 

t(x)la(z)exp[-md(x)(1-z)]dz. Thus, if the disabled population at ages younger than x 

became stationary at a certain time, then at the subsequent time the number of 

survivors aged (x+1) will become stationary and can be written as  

 

 

Because at the starting age the disabled population is stationary as d(s) since the initial 

time, disabled population will eventually reach stationary at any age. Subsequently, 

the person-years lived in age group (x, x+1], namely La(x) for active and Ld(x) for 

disabled status, the stationary disabled proportion do(x)=Ld(x)/[La(x)+Ld(x)], and the 

stationary death rate of total population mo(x)=do(x)md(x)+[1-do(x)]md(x), are 

obtained.  

 

 For the oldest open age group including age w and older, however, (2) does 

not apply, and Ld(w+) cannot be derived directly. Nonetheless, for active status, 

La(w+) can still be expressed as 1/[t(w+)+ma(w+)], assuming that t(w+) and ma(w+) 

are constant across all ages over w. Because |m(x)-mo(x)|=|[do(x)-d(x)][ma(x)-md(x)]| 

are much smaller than |ma(x)-md(x)|, |m(x)-mo(x)| should be small for all finite age 

groups. The difference between m(w+) and mo(w+) should also be small, if ma(w+) 

and md(w+) as well as t(w+) could be assumed constant across age so the open age 

group can be treated as other age groups. Thus, mo(w+) can be replaced by the 

observed m(w+), the person-years of the oldest open age group in the stationary total 

population can be written as, 

 

 

 

and the person-years of oldest open age group in the stationary disabled population is 

obtained as  
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The multistate stationary population is therefore established. The total-person-years 

over age s, namely Ta(s) for active and Td(s) for disabled status, are sums of La(x) and 

La(x) from age s, respectively. The prevalence ALE and DLE can then be rebuilt on 

the basis of 'current' disability and mortality risks, called the stationary ALE and DLE, 

and denoted as ea(s)=Ta(s)/[la(s)+ld(s)]=Ta(s) and ed(s)=Td(s), respectively.  

 

The stationary disabled proportion, do(x), reached by fixing the 'current' t(x) 

and ma(x) as well as md(x), may remarkably differ from the 'current' disabled 

proportion d(x) that is resulted from historical changes of mortality and disability. 

Nonetheless, the stationary death rate for the total population, mo(x), would differ 

only slightly from m(x) for the reason mentioned above. Consequently, the two 

stationary total populations, of which one is calculated from m(x) on the homogenous 

assumption that individuals aged x are identical and another is computed from mo(x) 

using the multistate model that divides individuals into two status, should differ only 

slightly. 

 

 

Measures of accumulative disability risk 
 

    

The fraction of disabled life expectancy, FDL(s), is often used to describe 

disability risk accumulated over age s. Now the FDL(s) stands on 'current' risks of 

disability and mortality, and can be compared over times and between regions. 

Because FDL(s)=ed(s)/[ea(s)+ed(s)]=ed(s)/e(s), it indicates the fraction of disabled life 

expectancy for both active and disabled individuals aged s. Mixing up active and 

disabled individuals at age s, who face different risks at older ages, the FDL(s) cannot 

properly measure accumulative disability risk. For example, a higher FDL(s) may 

result from a larger ld(s) and has nothing to do with higher disability risk over age s.  

 

Because the multistate model is established, accumulative disability risk can 

be measured one way or another. In this model the equilibrium of each status is 

described, the question is how to compose aggregate indexes to describe the risk of 

entering and staying in a specific status: disabled. Since it is the active-to-disabled net 

transition that should be modeled, the risk of becoming disabled at ages older than s is 

relevant only for active people aged s, and this risk can be measured as following. 

 

Active individuals aged s may either die or become disabled at older ages. In 

the active stationary population and the age group (x, x+1], the number of becoming 

disabled is t(x)La(x). The lifetime disable probability for active survivors aged s, 

namely LDP(s), is therefore obtained as    

 

  

The LDP(s) measures the risk of becoming disabled at ages older than s for active 

people aged s. According to (1), reducing active mortality at age x causes La(y) to 

increase at y>x, which in turn raises LDP(s) through (5), if t(x) were unchanged. 

Thus, decline of active mortality at ages older than s raises the risk of becoming 
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disabled over age s. Equation (5) also illustrates that changing mortality of disabled 

status does not affect the risk of becoming disabled. Therefore, any mortality decline 

that includes active mortality raises the risk of becoming disabled, if t(x) remain 

unchanged. 

 

 Without utilizing mortality of disabled status, LDP(s) excludes the risk of 

staying in disabled status. For example, LDP(40)=0.5 indicates that half of active 

individuals aged 40 will eventually become disabled. But this does not describe at 

what ages these active people become disabled, which may determine how long to 

live in disabled status and should also be discussed.  

 

Let L*d(x) be the disabled-person-years in age group (x, x+1] that is composed 

only by disabled people aged s<x, and T*d(s) and e*d(s)=T*d(s)/ld(s) be the 

corresponding total-person-years and life expectancy. In other words, L*d(x) and 

T*d(s) as well as e*d(s) are quantities in the absence of active-to-disabled net 

transition at ages over s. Then [Td(s)-T*d(s)] is the total-person-years due to active-to-

disabled net transitions over age s, and [Td(s)-T*d(s)]/la(s) is the disabled life 

expectancy of active individuals aged s. As disabled life expectancy of active people, 

[Td(s)-T*d(s)]/la(s) reflects both the risk of entering and staying in disabled status and 

the level of disabled mortality, and should not be used as a measure of only the 

former. This is because, if a population's e*d(s) is higher than another, its [Td(s)-

T*d(s)]/la(s) would also be higher, even if its age pattern of becoming disabled is the 

same as another population. This is similar to the situation of FDL(s), in which ed(s) 

reflects both disability risk and overall mortality, and therefore the FDL(s)=ed(s)/e(s), 

instead of ed(s) itself, is often used to measure disability risk over age s. Unlike that 

ed(s) is a fraction of e(s), however, the relationship between [Td(s)-T*d(s)]/la(s) and 

e*d(s) needs further analysis. 

 

The [Td(s)-T*d(s)] is composed by individuals who are active at age s, become 

disabled later at different ages and stay in disabled status for different years. How to 

simplify this complex process? I proposed a procedure (Li, 2004) that begins from 

recalling the strategy of life expectancy at age s, e(s). For individuals aged s, they will 

die at older but different ages. The basic idea of life expectancy is to ask if the total-

person-years over age s maintained invariant and all individuals died at the same age, 

what would this age be? The answer is [s+e(s)] years.  

 

Now there are la(s) active individuals aged s, some of them will become 

disabled before death, and the total-person-years of their living in disabled status is 
[Td(s)-T*d(s)]. Similar to the situation of life expectancy, I ask if [Td(s)-T*d(s)] 

remained invariant and all active individuals who become disabled did so at the same 

age s, what would the number of these individuals be? This number must be a fraction 

of la(s). Defining this fraction as the equivalent disability fraction at age s and 

denoting it as EDF(s), the number of those who become disabled hypothetically at age 

s is EDF(s)la(s). Since these active individuals become disabled at age s, they will 

follow disabled mortality then and live e*d(s) years in disabled status, and the total-

person-years of living in disabled status due to this hypothetical transition is 
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EDF(s)la(s)e*d(s). Because the total-person-years of living in disabled should hold 

constant, there is 

 

 The basis of EDF(s) is the equivalence of disabled total-person-years. On one 

hand, the number of active persons who become disabled at different ages older than s 

is not EDF(s)la(s) but larger. On the other hand, the years of living in disabled status 

for each of such person is not e*d(s), but fewer. If two persons living in disabled status 

for one year were equivalent to one person living in disabled status for two years, the 

different ages at which active individuals become disabled can be simplified as one 

age that is s, and the different years in which they live in disabled status can be 

summarized as a unique number which is e*d(s). This simplification requires a certain 

number of active individuals, EDF(s)la(s), to become disabled, and provides a 

measure of risk of becoming and staying in disabled statues over age s, EDF(s).  

 

 The EDF(s) can be explained in the way similar to that of FDL(s). The [Td(s)-

T*d(s)]/la(s) would be higher when the disabled mortality is lower and vice versa. 

Dividing [Td(s)-T*d(s)]/la(s) by e*d(s) reduces the effect of disabled mortality level, 

and leads to EDF(s). The EDF(s) has also the following geometric interpretation. The 

[Td(s)-T*d(s)] measures the area under the curve [Ld(x)-L*d(x)] for x>s, which equals 

that of the square with width la(s)e*d(s) and height EDF(s). Subsequently, [Td(s)-

T*d(s)] is divided into two orthogonal components: one is la(s)e*d(s) which describes 

the active population size and disabled mortality level, and another is EDF(s) that 

measures the risk of entering and staying in disabled status over age s, controlling for 

e*d(s).                 

 

 For given t(x), reducing active mortality raises Td(s) but does not affect T*d(s). 

Accordingly, (6) indicates that reducing active mortality raises EDF(s). Lowering 

disabled mortality raises Td(s) and T*d(s) as well as e*d(s). Comparing to reducing 

active mortality, the effect of lowering disabled mortality would be smaller, because 

the increases of both numerator and denominator of EDF(s) will cancel each other. 

The up or down direction in the change of EDF(s), however, depends on the age 

patterns of mortality change and becoming disabled. Consequently, when active and 

disabled mortality decline by similar rates, EDF(s) will increase.  

 

 

Examples and discussion 
 

I use the US data in 1990 for examples. The age-specific death rates are 

adopted from Tuljapurkar, Li and Boe (2000). The disabled proportions, d(x), are 

cited from Crimmins, Saito and Ingegneri (1997), in which a disabled person is 

defined as not being able to perform the normal activities of life including going to 

school for children, working, keeping house or other things that people do. These data 
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are listed in the second and seventh columns in Tables 1 and 2, respectively. The 

ma(x), md(x) and t(x) are not yet available at national level. Based on the well-known 

Gompertz exponential law (Gompertz, 1825) and the Cox proportional hazard model 

(Cox, 1972), I proposed a procedure (Li, 2004) that estimates the values of ma(x), 

md(x) and t(x) as in shown in Tables 1 and 2. The m(x)=[1-d(x)]ma(x)+d(x)md(x) are 

close to the observed values of age-specific death rates, implying that the estimated 

ma(x), md(x) and t(x) should be close to their true but unknown values. Since the 

purpose of this paper is not to discuss the accuracy of these estimates, I assume that 

the values of m(x), ma(x), md(x) and t(x) are calculated directly from census and vital 

statistics as they could be, and call them observed values.      

   

 

Table 1. Mortality and disability data of the U.S. males, 1990 
Age 
    x        

Observed 
death 
rates 

ma(x) md(x)        t(x)      do(x)      d(x) 
 

    mo(x) 

   
 

     m(x)  
   
 

 
40-44 0.0034 0.0033 0.0036 0.0091 0.1539 0.1345 0.0033 0.0033 

45-49 0.0049 0.0050 0.0055 0.0110 0.1960 0.1707 0.0051 0.0051 

50-54 0.0076 0.0076 0.0084 0.0142 0.2460 0.2128 0.0078 0.0078 

55-59 0.0121 0.0116 0.0129 0.0217 0.3121 0.2635 0.0120 0.0120 

60-64 0.0190 0.0178 0.0197 0.0229 0.3872 0.3370 0.0185 0.0184 

65-69 0.0285 0.0272 0.0301 0.0292 0.4639 0.4060 0.0285 0.0284 

70-74 0.0435 0.0416 0.0460 0.0287 0.5387 0.4909 0.0440 0.0438 

75-79 0.0661 0.0636 0.0703 0.0307 0.6035 0.5686 0.0676 0.0674 

80-84 0.1014 0.0972 0.1074 0.0413 0.6690 0.6577 0.1041 0.1039 

85+ 0.1655 0.1486 0.1642 0.0762 0.7963 0.8006 0.1611 0.1611 

 
 

 

Table 2. Mortality and disability data of the U.S. females, 1990 
Age 
    x 

Observed 
death 
rates 

   ma(x)    md(x)      t(x)     do(x)     d(x)    mo(x)     m(x) 

40-44 0.0016 0.0016 0.0017 0.0076 0.1563 0.1401 0.0016 0.0016 

45-49 0.0027 0.0026 0.0027 0.0105 0.1942 0.1708 0.0026 0.0026 

50-54 0.0043 0.0041 0.0042 0.0089 0.2333 0.2115 0.0041 0.0041 

55-59 0.0068 0.0065 0.0067 0.0087 0.2670 0.2420 0.0066 0.0066 

60-64 0.0107 0.0104 0.0106 0.0149 0.3097 0.2684 0.0104 0.0104 

65-69 0.0160 0.0164 0.0168 0.0262 0.3791 0.3168 0.0166 0.0165 

70-74 0.0246 0.026 0.0267 0.0311 0.4666 0.4055 0.0263 0.0263 

75-79 0.0386 0.0413 0.0423 0.0499 0.5690 0.5040 0.0419 0.0418 

80-84 0.0638 0.0655 0.0671 0.1066 0.7115 0.6539 0.0667 0.0666 

85+ 0.1145 0.1039 0.1065 0.2221 0.9385 0.9263 0.1063 0.1063 

 

 

 

Assuming ma(x), md(x) and t(x) are constant over time, the population will be 

stationary from any initial state including that associated with d(x) and m(x). As can 

be seen in Tables 1 and 2, the stationary do(x) differ remarkably from d(x), which 

were observed in 1990. Nevertheless, as expected, the stationary mo(x) are almost 
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identical to the m(x) observed in 1990, implying slight difference between the 

multistate-heterogeneous and ordinary-homogenous stationary population. 

 

For examples in this paper, I take s=40, because the disability risk is low at 

ages younger than 40 years, and older than age 40 the Gompertz law works well. 

Based on data in Tables 1 and 2, FDL(40) and LDP(40) as well as EDF(40) are 

calculated as baseline values and shown in Table 3. 

 

 

 

Table 3. The baseline measures of accumulative disability risk over age 40 

 FDL(40) LDP(40) EDF(40) 

Male 0.3788 0.5072 0.2897 

Female 0.4091 0.6219 0.3144 

      

  

For population aged 40, values of FDL(40) are 0.38 for males and 0.41 for 

females. Since the value of d(40) for males is also smaller than for females as can be 

seen in Tables 1 and 2, it is hard to tell which gender's disability risk is higher at ages 

over 40. This is because the smaller value of FDL(40) for males may be a result of 

fewer disabled individuals aged 40, and have nothing to do with disability risk at ages 

over 40. 

 

 In the stationary state of active population, the age-specific numbers of 

becoming disabled are shown in Figure 1. Summing these numbers over age and 

dividing by the number of active people aged 40, the values of LDP(40) are obtained 

as 0.51 for males and 0.62 for females. Apparently, the risk of becoming disabled is 

high, and for females it is 22% higher than for males. But, Figure 1 also shows that 

females become disabled at older ages than do males. Consequently, the risk of 

entering and staying in disabled status for females should not be so much higher, or 

could be even lower, than for males. But how much higher or lower?     

 

Those who are active at age 40 would become disabled following the age 

patterns shown in Figure 1, survivor to different ages subjecting to disabled mortality, 

and eventually form the stationary age structure according to (2). These stationary age 

structures are shown by the solid curves in Figure 2 for males and Figure 3 for 

females. The disabled total-person-years for active people aged 40 is the area below 

the solid curve in Figure 2  or 3, whose value depends also on the disabled mortality 

that can be measured by e*d(40). Among those who are active at age 40, the fraction 

of EDF(40) would have to become disabled at this age in order to yield a disabled 

total-person-years that equals the area under the solid curve. This hypothetical 

disabled total-person-years is measured by the area in the dashed square in Figure 2 or 

3. And this equivalent square separates the disabled-total-person-years into two 

components: the width la(40)e*d(40) that reflects the effect of active population size 

as well as disabled mortality level, and the height EDF(40) that measures the risk of 

entering and staying in disabled status.  

 

The values of EDF(40) are 0.29 for males and 0.31 for females. Thus, the risk 

of entering and staying in disabled status for females is only 7% higher than for 
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males, which is much lower than the 22% from comparing the values of LDP(40) and 

is expected from analyzing Figure 1.  

 

In the model of EDF(40), individuals become disabled at the same age 40 that 

is younger than in that of LDP(40). Meanwhile, the disabled total-person-years of 

EDF(40) equals that would be derived by LDP(40). Therefore, the value of EDF(40) 

should be smaller than that of LDP(40), as shown in Table 1.  

   

The measure of the risk of becoming disabled at age x under the condition of 

surviving to this age in active status, t(x), is independent with mortality change. 

Fixing t(x), effect of reducing mortality on accumulative disability risk can be 

examined. This effect would reflect the consequence of mortality decline, if reducing 

fundamental disability risk were ignored. In order to illustrate this effect in a 

controllable way, I use three scenarios of mortality decline: (1) ma(x) drops 10%, (2) 

md(x) drops 10%, and (3) that both ma(x) and md(x) drop 10%, at all x>s. Mortality 

has been observed dropping by similar rate at ages over 40 (Lee, Tuljapurkar and Li, 

2004), and could be approximated by scenario (3) or other combinations of scenarios 

(1) and (2). To show the consequences on FDL(40) and LDP(40) as well as EDF(40), 

the ratio of their values in each scenario to that in baseline is displayed in Figure 4 for 

males and Figure 5 for females. 

 

 Reducing active mortality at ages older than 40 would lift Ta(40) directly 

through (1) and also raise Td(40) because, as can be seen in (2), some of the increased 

active survivors would become disabled. On one hand, the increase of Td(40), due to 

some of the increased active survivors becoming disabled, should be smaller than that 

of Ta(40) that is composed by the increased active survivors themselves. On the other 

hand, given the same increase of Ta(40) and Td(40), the reduction of 

FDL(40)=Td(40)/[Ta(40)+Td(40)] caused by the rising of Ta(40) would be smaller 

than the increase of FDL(40) resulting from the rising of Td(40). As result, the effect 

of reducing active mortality on FDL(40) would be slight with uncertain up or down 

direction, as presented by consequences of scenario (1) in Figures 4 and 5. 

 

 Reducing disabled mortality at ages older than 40 lifts Td(40) but does not 

affect Ta(40), and therefore raises FDL(40), as in scenario (2) in Figures 4 and 5. This 

indicates that reducing disabled mortality raises the risk of staying in disabled status, 

without controlling for e*d(40). Since reducing active mortality would change 

FDL(40) only slightly, lowering both active and disabled mortality by the same rate, 

as in scenario (3), would raise FDL(40), as shown in Figures 4 and 5.  

 

 Because of mixing up active and disabled people, FDL(40) may mislead 

policy studies. For example, reducing active mortality and ignoring disabled people 

would not systematically raise FDL(40), as demonstrated by the consequences of 

scenario (1) in Figures 4 and 5. Furthermore, raising disabled mortality, though too 

inhuman to be even thought of, reduces FDL(40).   

 

 The reactions of LDP(40) are easy to understand. Reducing active mortality 

increases active survivors. Since some of the increased active survivors will become 

disabled, the number of becoming disabled, and hence LDP(40), increase, as shown 
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by scenario (1) in Figures 4 and 5. Changing disabled mortality has nothing to do with 

how active people die and become disabled, and thus does not affect LDP(40). 

Accordingly, the consequences of scenarios (1) and (3) are identical, and any 

mortality decline that includes active mortality raises LDP(40). 

 

 As also expected from above analysis, scenario (1) shows that reducing active 

mortality raises EDF(40), scenario (2) indicates that lowering disabled mortality 

changes EDF(40) slightly with uncertain trend, and scenario (3) illustrates that 

reducing both active and disabled mortality by the same rate raises EDF(40), in 

Figures 4 and 5. Lowering disabled mortality, which is shown by scenario (2), would 

apparently raise the risk of staying in disabled status. Then why EDF(40) declines in 

Figures 4 and 5? This is because EDF(40) measures the risk of entering and staying in 

disabled status by controlling for the e*d(40). Although the years that active people 

aged 40 lived in disabled status increased, its increase is smaller than that of e*d(40). 

In other words, the years that active people aged 40 lived in disabled status, relative to 

that of disabled people aged 40, reduced in scenario (2).  

 

 If the task of reducing the fundamental disability risk t(x) were ignored, 

mortality decline would raise accumulative disability risk according to all the three 

measures, which were already high according to the indirect data from 1990. The 

values of LDP(40) in Table 3 imply that more than half of active people aged 40 

would die in disabled status.  

 

 But is it true that most people are disabled shortly before death, so that the 

LDP should be close to 1 and does not make much sense? Yes, if the death and 

transition rates were associated to infinitively short period rather than one year. In this 

paper, active people can either die or become disabled, but cannot do both, in one 

year. Thus, those who become disabled and then die in one year are counted as died in 

active status. Since these people would live in disabled statues for half year on 

average, measuring death and transition rates in one year ignores short-than-half-year 

disabled statues, and the LPD in this paper includes longer-than-half-year disabled 

statues. Nonetheless, this is not a practical problem, because short-term disabled does 

not impose serious burden, emotionally or economically. For example, by definition 

many people are driven into disabled statues shortly by diseases and events such as flu 

or even hangover, but they are not regarded as disabled.          

 

 The LDP, however, does raise a practical question. Among the active people 

aged 40, more than half will become disabled at least half year before death. But 

being disabled for half or ten years before death is a big difference, how to measure 

the disabled duration? The EDF(40) answers. According to the definition of disability 

mentioned above, about 30% active people would have become disabled at age 40 in 

order for the disabled total-person-years to equal that generated by the accumulative 

disability risk. Imaging how high the disability risk would be if 30% active people 

became disabled at age 40 besides those who were already so at this age. Moreover, 

given that the declines of mortality at ages over 40 had been significant in the second 

half of the last century (Lee and Miller, 2001) and are likely to be so in the future, 

accumulative disability risk would be even higher in the future if sufficient effort of 

reducing t(x) were not made. 
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       The consequences of reducing t(x) are simple. Through raising active 

proportion in the stationary population, reducing transition rates lowers m(x), if 

ma(x)<md(x). But, this process cannot make m(x) lower than ma(x). Therefore, 

reducing transition rates may lower m(x) only slightly, as can be seen in Tables 1 and 

2. As to accumulative disability risk, Ta(40) will increase and Td(40) will decline, but 

T*d(40) will maintain unchanged. Thus, FDL(40) and EDF(40) will decline. Since 

lowering t(x) reduces the number of becoming disabled at age x, and since only part 

of this reduction will become disabled at older ages, so the total number of becoming 

disabled, and hence LDP(40), will decline. Therefore, according to all the three 

measures, accumulative disability risk can be reduced by lowering t(x). What factors 

affect and how to lower t(x), however, are issues to be further explored.  
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