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Abstract

A simple model is developed that captures the main features of life - reproduction,

growth and maintenance. These features are determined by a single state variable,

vitality. The resulting optimal life-history strategies are classified with respect to the

course of their characteristic age-trajectory of mortality. It is shown that the range of

optimal life histories is wide. The main factors that determine whether an optimal life-

history follows a non-senescent strategy or a senescent strategy are the costs of growth

and maintenance. Of almost equal importance are the costs of reproduction. Mortality

conditions may have a strong influence on the boundary between non-senescence and

senescence if the costs of maintenance and reproduction are relatively low. If the costs

are too high, even reduction of intrinsic or extrinsic mortality to zero cannot shift a

senescent strategy to a non-senescent one. Efficient systems of reproduction and growth

and, to some extent, low mortality conditions lead to non-senescent life-history strategies.



1 Introduction

The goal of evolutionary demography is to understand how evolution shapes the age-trajectories

of fertility, mortality, growth and transfers. This goal is the central concern of life-history the-

ory (Roff, 2002; Stearns, 1992). What is the optimal age and size at maturity? What is the

optimal number and size of offspring? What is the optimal frequency of reproductive events?

What is the optimal length of life? Typically, in each case, trade-offs determine the optimal

strategy since resources are limited.

An optimal life-history strategy maximizes an individual’s fitness. Fitness captures the

reproductive success of a genotype and can be measured by Lotka’s intrinsic rate of population

increase, r, implicitly defined by the Lotka equation,

1 =

∫ ∞

0

e−r a l(a) m(a) da. (1)

Another frequently used measure of fitness is the net reproductive rate, R, given by

R =

∫ ∞

0

l(a) m(a) da. (2)

The survival function l(a) indicates the probability of survival from birth (or conception) to

age a and the maternity function m(a) indicates age-specific reproduction.

Life-history optimization attempts to find an “evolutionary stable” strategy that cannot

be invaded by any other strategy Smith (1982). A mutant which diverges from the optimal

schedule would have slower population growth, ultimately resulting in its extinction. There-

fore, the evolutionary stable strategy is given by the functions l(a) and m(a) that maximize r.

Because no population can continue growing, in equilibrium this rmax must equal zero. Taylor

et al. (1974) proved that maximizing life-time reproduction, R, is equivalent to maximizing

the intrinsic rate of population increase, r, such that rmax = 0. Hence, in this paper, the

functions l(a) and m(a) that maximize R correspond to the optimal strategy.

Are there evolutionary stable life history strategies that prevent mortality from rising

with age? If senescence is defined as an increase in mortality with age, then non-senescence
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corresponds to mortality trajectories that do not increase with age. Could non-senescent

life-histories be optimal? Would a non-senescent strategy also involve increasing or constant

fertility with age? What characteristics lead to senescent vs. non-senescent life-histories?

A previously developed model shows that non-senescence can be optimal (Vaupel et al.,

2004). Size constitutes the central state variable in this framework. Mortality falls with

increasing size and reproductive potential rises. The case of determinate growth, however,

poses a challenge to this framework. Determinate growers, like humans, reach their final size

at about the age of maturity. While, after the onset of reproduction, size remains constant,

mortality steadily rises. This is incompatible with the strict size-dependence of mortality. A

new model can be developed to address the deficiencies of the size-based model. To capture

changing mortality at a constant size, the quality of size will be considered. The approach

is rationalized in the following way. Even if size remains unchanged, all cells progressively

accumulate damage over time and deteriorate. Vitality, defined as an individual’s size adjusted

for the functioning of body cells, can decline and therefore mortality can increase despite a

constant body size.

Facing ubiquitous decay, life is sustained by processes of rejuvenation. The continuous

creation of new, undamaged cells counterbalances deterioration. This balance determines

whether or not vitality declines. The level of rejuvenation and repair will depend on the

trade-offs between reproduction, on the one hand, and growth and maintenance, on the other.

The optimal schedule of resource allocation then determines the optimal trajectory of vitality.

Increasing vitality raises reproductive potential and lowers mortality. Reproduction results in

offspring but entails slower growth or even decline in vitality. The trajectory of vitality over age

determines the age-trajectories of fertility, mortality and growth. The following evolutionary-

demographic model sheds light on the fundamental questions of life-history theory based on

the single state variable vitality.
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2 The Vitality Model

Survival depends on mortality. It seems natural to model mortality as an inverse function of

vitality, denoted by ψ. A simple function for the force of mortality, µ, is

µ(ψ) =
b

ψ
+ c, (3)

where b and c are constant parameters. The intrinsic parameter b captures all causes of

death an individual can escape from by increasing its vitality, while the extrinsic parameter

c captures the always prevalent, non-zero risk of death. Note that ”extrinsic” and ”intrinsic”

refer to vitality-dependent vs. vitality-independent mortality.

Reproduction and growth depend on the level of available energy. In my model, available

energy ε(ψ) depends on the difference between build-up and break-down processes at current

vitality,

ε(ψ) = k ψ0.75 − κψ, (4)

where k and κ are constant parameters. Anabolic, build-up processes are directly linked to

metabolic rate, which, based on the literature, is assumed to be proportional to vitality to

the power 0.75 (Charnov, 1991; Lavigne, 1982; West et al., 2001). Catabolic, break-down

processes are assumed to be proportional to vitality to the power one. Energy is maximum at

vitality ψε

ψε =

(
3

4

k

κ

)4

. (5)

A fraction π(ψ) of ε(ψ) is allocated to growth and the remaining fraction 1 − π(ψ) to

reproduction. Vitality ψ changes over time according to the difference between newly built

cells and the unavoidable deterioration of functioning of current cells at a constant rate δ,

ψ̇ = π(ψ)ηg ε(ψ) − δ ψ. (6)

Note that the constant parameter ηg (g for growth) has no effect if π(ψ) equals either one or

zero.
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The level of π(ψ) that corresponds to maintenance of current vitality is given by Eq. 6

when ψ̇ = 0,

π0 =

(
δ

k ψ−0.25 − κ

) 1
ηg

. (7)

Vitality cannot increase indefinitely. An upper limit to ψ, denoted by Ψ, is reached at

maximum investment π(ψ) = 1 and ψ̇ = 0,

Ψ ≡
(

k

κ + δ

)4

. (8)

Available energy must be nonnegative. This implies that

ψ ≤
(

k

κ

)4

(9)

must hold. This is always true since ψ cannot exceed maximum attainable vitality Ψ.

Fertility is proportional to available energy ε(ψ) and determined by the faction 1 − π(ψ)

used for reproduction,

m(ψ) = ϕ [ 1 − π(ψ) ]ηr
ε(ψ)

ψ
ηj

0

. (10)

Available energy is divided by the initial vitality of offspring, ψ0. The constant parameter

ηj > 1 (j for juvenile) captures the additional energy that is necessary to create one baby.

The constant parameter ηr (r for reproduction) captures the costs of running a reproductive

system parallel to a rejuvenation system. The constant ϕ is a scaling parameter set to the

value that ensures that optimal lifetime reproduction is equal to one and, hence, rmax = 0.

2.1 The Parameters

2.1.1 k, κ and δ

Parameter k captures the speed of growth of vitality (Eqs. 4 and 6). Faster growth implies

a quick fall in mortality (Eq. 3) and reduces the time of development. Furthermore, higher

values of k decrease maintenance costs (Eq. 7) and increase maximum vitality (Eq. 8).

Parameter κ is inversely related to maximum vitality. Elevating κ slows growth, increases
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maintenance costs (Eq. 7) and decreases maximum vitality (Eq. 8). Parameter δ determines

the speed of decline in vitality (Eq. 6). Higher δ increases maintenance costs (Eq. 7) and

decreases maximum vitality (Eq. 8).

If all energy is allocated to reproduction, then δ determines the constant rate of increase

in mortality (Eq. 3). A decline in vitality not only implies a reduction in survival but also

a reduction in reproductive potential. Therefore, larger values of δ will tend to increase the

investment of resources in growth in order to slow down the deterioration process.

Parameters k and κ determine the shape of the energy trajectory over vitality (Eq. 4). An

increase in vitality beyond the threshold given in Eq. 5 leads to a decrease in energy and can

only be optimal if the reduction in mortality offsets the loss in growth and reproductive po-

tential. If κ < 3δ then energy is an increasing function of vitality because Ψ < ψε. Otherwise,

the hump shape of energy with respect to vitality can lead to increasing fertility despite a fall

in vitality.

Together, k, κ and δ determine the maximum level of vitality Ψ that is possibly attainable.

The same maximum vitality can be reached by various combinations of these parameters taking

into account their different effects on speed of growth and decay and available energy.

2.1.2 b and c

Parameters b and c determine the overall level of mortality (Eq. 3). Higher levels of mortality

discount future reproduction. Therefore it seems reasonable that low levels of mortality should

be associated with non-senescent strategies and high levels of mortality should be associated

with senescent strategies. This hypothesis is investigated below.

Parameter b captures the state-dependent component of mortality, i.e. b determines how

important it is to attain and maintain a high vitality. High b determines the minimum level

of state-dependent mortality, b/Ψ, which also depends on maximum vitality Ψ. Since b/ψ0

determines infant mortality, the magnitude of b also influences the optimal vitality at birth.

Parameter c captures the state-independent mortality component. The overall level of infant

mortality is given by b/ψ0 + c and the minimum mortality that can be attained is given by

b/Ψ + c.
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2.1.3 ηr and ηg

Parameter ηr determines how energy is translated into reproduction (Eq. 10) and hence it

determines the propensity to share resources between reproduction and growth. Values below

one favor parallel investment in growth and reproduction.

Parameter ηg determines the maintenance costs of a certain vitality (Eq. 7). Large ηg

implies higher maintenance costs at each level of vitality. Therefore, low values of ηg favor

non-senescence strategies. During periods of parallel growth and reproduction, higher ηg

implies a reduced speed of growth.

Both parameters ηr and ηg capture efficiencies and determine how advantageous it is to

specialize in growth and reproduction, i.e. how costly it is to run a growth and reproduction

system in parallel.

3 Solution

An optimal investment trajectory π∗(ψ) (the star indicates “optimal”) is found by maximizing

life time reproduction (Eq. 2). I did this by applying a dynamic programming approach,

following a backward procedure and assuming stepwise constant vitality (Bellman, 1965).

Vitality ψ can be normalized through division by some reasonable base unit of ψ and is

therefore dimensionless. Consequently, initial vitality (for the algorithm) can be set equal to

one. The path of π∗(ψ) determines the optimal vitality trajectory and the time τ it takes to

reach the subsequent level of vitality. Summing over τ gives the corresponding age-trajectory.

Since the single state approach only allows for monotonic state trajectories, a second

artificial state is given by an ”up” and ”down” mode of vitality. Any state path starts off

in up mode, with the option of switching to down mode. Switching back to up mode is not

possible. The backward procedure begins at vitality ψ = 1 in down mode and successively

proceeds backward to maximum vitality ψ = Ψ. At each level of vitality in down mode the

optimal decision is whether to maintain or decrease current vitality. At maximum vitality,

up mode is assumed and vitality is followed backward down to ψ = 1 again. At each level of

vitality in up mode the optimal decision is whether to increase or maintain vitality or switch

6



into down mode.

Note that once π = 0 is optimal π has to remain zero. Since the creation of new cells

requires perfect originals, all current cells will have accumulated some damage if the steady

process of creation is interrupted.

Vitality at birth, ψ0, does not influence the optimal investment path. As a constant it

can be taken outside the integral in Eq. 2. Therefore, in a dynamic optimization procedure

π∗(ψ) is found without taking into account ψ0 in the maternity function in (10). Afterwards,

optimal vitality at birth is simply calculated by solving

ψ0 = max
ψ

R∗(ψ)

(ψ)ηj
, (11)

where R∗(ψ) captures optimal remaining reproduction at vitality ψ.

4 Size

Size itself does not enter the model. It is, however, a variable closely linked to vitality that

can be measured. One measure of size is the accumulated number of body cells. The change

in size ξ is given by the difference between newly created tissue at current vitality ψ and the

amount of old body parts shed at a rate δξ

ξ̇ = π(ψ)ηg ε(ψ) − δξ ξ. (12)

Thus, having linked size and vitality the model can be rooted in reality. So far, vitality

has been dimensionless and the time units arbitrary. Initial vitality (for the algorithm) was

normalized to ψ = 1, dividing by some reasonable base unit. Now, this ”reasonable base unit”

ψbase can be established via

ξ0/ψ0 = ψbase (13)

where ξ0 is obtained from empirical data. Also the unit of time can be established. The time it

takes for size to change from in ξ0 to ξ1 in the model should be equal to the time that it takes
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Table 1: Linking the Dynamics
of Size, ξ, and Vitality, ψ.

ξ̇ = 0 ψ̇ = 0

δξ < δψ ψ̇ < 0 ξ̇ > 0

δξ = δψ ψ̇ = 0 ξ̇ = 0

δξ > δψ ψ̇ > 0 ξ̇ < 0

in reality for this change in size. For this connection, knowledge about δξ is indispensable.

Table 1 summarizes the different dynamics in vitality and size depending on the rate of

deterioration in functioning of cells δψ(= δ) and the rate of loss in old body cells δξ. Note that

a constant size could correspond to any mortality trajectory, depending on the relation of δξ

to δψ. Without knowledge about the relation between δξ and δψ patterns of growth cannot be

linked directly to patterns of mortality.

5 The Eight Varieties of Life Histories

Eight different types of optimal strategies can be found to result from this model, classified

with respect to the specific trajectory of π. From birth to maturity π(ψ) = 1 and vitality

increases. After maturity π(ψ) drops below one. Vitality might be maintained, increase or

decrease. Once maintenance of vitality is optimal, it will be optimal at all subsequent ages in

this one state model. The eight strategies are described below. Each description of a strategy

begins at maturity. Note that the function π(ψ) captures the trajectory of actual investment

over vitality whereas the function π0(ψ) determines the level of investment that would be

necessary to maintain the current level of vitality ψ.
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5.1 Strategies with Senescence

5.1.1 Senescence

Senescence corresponds to a strategy of π = 0. Vitality decreases exponentially at a rate δ.

Senescence captures the familiar case of Gompertzian mortality, with mortality and fertiltiy

patterns similar to those of many mammals, birds, and other species. Reproduction is initiated

and mortality rises exponentially when investment switches from one to zero. Note that

both reproduction and maintenance are costly. An example is illustrated in Fig. 1 with the

parameter combination

ηr = 2, ηg = 2, b = 0.3, c = 0.01, k = 3, κ = 0.8, δ = 0.1. (14)

10 20 30 40 50
age

0.2

0.4

0.6

0.8

1
investment

10 20 30 40 50
age

0.05

0.1

0.15

0.2

0.25

0.3

mortality

10 20 30 40 50
age

0.02

0.04

0.06

0.08

fertility

Figure 1: Example of Senescence. (Dashed line: π0, level of investment required for mainte-
nance)
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5.1.2 Delayed senescence

Delayed senescence corresponds to a strategy of π > π0 followed by π = 0. Vitality first

increases and then decreases exponentially at a rate δ. At younger ages reproduction in-

creases while mortality decreases. Only after reproduction sharply rises mortality increases

exponentially. Delayed senescence can be optimal if the propensity to share resources between

reproduction and growth is strong (ηr < 1) but maintenance is costly (ηg > 1). Since extrinsic

mortality is high, early reproduction is favored. Still, a larger reproductive potential is striven

for and established. Then, in a second reproductive peak this potential is finally harvested at

the cost of total deterioration of the individual. Fertility can fall while mortality also falls.

An example is illustrated in Fig. 2 with the parameter combination

ηr = 0.5, ηg = 2, b = 0.2, c = 0.1, k = 3, κ = 0.8, δ = 0.1. (15)

10 20 30 40
age

0.2

0.4

0.6

0.8

1
investment

10 20 30 40
age

0.15

0.2

0.25

0.3
mortality

10 20 30 40
age

0.05

0.1

0.15

0.2

0.25

fertility

Figure 2: Example of Delayed Senescence. (Dashed line: π0, level of investment required for
maintenance)
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5.1.3 Subsustenance

Subsustenance corresponds to a strategy of 0 < π < π0, where π ≈ π0. Vitality slowly

decreases.

Investment after maturity falls just slightly below maintenance level which is indicated by

the dashed line. The missing fraction of energy that would be necessary to truly maintain

vitality is used to increase reproductive output. If maintenance is cheap (ηg < 1) the increase in

mortality can be retarded in such a way that, virtually, the individual maintains its state. An

example is illustrated in Fig. 3. Life-expectancy at birth is only 13 and about 31 at maturity

α = 8. The high intrinsic and low extrinsic mortality favor the investment in growth. The

example pertains to the parameter combination

ηr = 2, ηg = 0.5, b = 1, c = 0.001, k = 3, κ = 0.8, δ = 0.1. (16)

5 10 15 20
age

0.2

0.4

0.6

0.8

1
investment

2000 4000 6000 8000 1000012000
age

0.2

0.4

0.6

0.8

1
investment

2000 4000 6000 8000 1000012000
age

0.2

0.4

0.6

0.8

1

mortality

2000 4000 6000 8000 1000012000
age

0.01

0.02

0.03

0.04

0.05

fertility

Figure 3: Example of Subsustenance. (Dashed line: π0, level of investment required for
maintenance) Note that in the lower right picture the trajectories of π and π0 overlap, because
π falls just slightly below π0.
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5.1.4 Delayed subsustenance

Delayed subsustenance corresponds to a strategy of π > π0 followed by 0 < π < π0, where

π ≈ π0. Vitality first increases and then decreases at a very slow pace.

The cheap costs of maintenance favor investment in growth. The level of extrinsic morality

together with reasonable costs of reproduction promote an early age of maturity. An example

is illustrated in Fig. 4 with the parameter combination

ηr = 1, ηg = 0.5, b = 0.1, c = 0.02, k = 3, κ = 0.7, δ = 0.2. (17)

2 4 6 8 10 12 14
age

0.2

0.4

0.6

0.8

1
investment

2000 4000 6000 8000 1000012000
age

0.2

0.4

0.6

0.8

1
investment

2000 4000 6000 8000 1000012000
age

0.04

0.06

0.08

0.1

0.12
mortality

2000 4000 6000 8000 1000012000
age

0.005

0.01

0.015

0.02

0.025

fertility

Figure 4: Example of Delayed Subsustenance. (Dashed line: π0, level of investment required
for maintenance) Note that in the lower right picture the trajectories of π and π0 overlap,
because π falls just slightly below π0.
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5.2 Strategies with Sustenance

5.2.1 Sustenance

Sustenance corresponds to a strategy of π = π0 immediately after the period of development.

Vitality is maintained.

The case of sustenance is illustrated in Fig. 5. At the age of maturity investment steps

down to maintenance level. Reproduction starts and both mortality and fertility remain at

non-zero, constant levels. Costly reproduction and maintenance (ηr > 1, ηg > 1) but low

mortality as compared to the example in Fig. 1 characterize this example with the parameter

combination

ηr = 2, ηg = 2, b = 0.2, c = 0.001, k = 3, κ = 0.8, δ = 0.1. (18)

2 4 6 8 10
age

0.4

0.6

0.8

1
investment

2 4 6 8 10
age

0.05

0.1

0.15

0.2

mortality

2 4 6 8 10
age

0.001

0.002

0.003

0.004

0.005

0.006

fertility

Figure 5: Example of Sustenance. (Dashed line: π0, level of investment required for mainte-
nance)
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5.2.2 Supersustenance

Supersustenance corresponds to a strategy of π > π0 followed by π = π0. Vitality first increases

and then is maintained.

The case of Supersustenance is illustrated in Fig. 6. Investment falls smoothly from one

down to maintenance level. Mortality decreases while fertility increases until the trajectories

reach a constant level. Both reproduction and maintenance are cheap in this example (ηr < 1,

ηg < 1) and mortality is low as can be seen from the parameter combination

ηr = 0.5, ηg = 0.5, b = 0.2, c = 0.004, k = 3, κ = 0.8, δ = 0.1. (19)

2.5 5 7.5 10 12.5 15 17.5
age

0.2

0.4

0.6

0.8

1
investment

2.5 5 7.5 10 12.5 15 17.5
age

0.05

0.1

0.15

0.2

mortality

2.5 5 7.5 10 12.5 15 17.5
age

0.002

0.004

0.006

0.008

fertility

Figure 6: Example of Supersustenance. (Dashed line: π0, level of investment required for
maintenance)
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5.3 Strategies with Both Senescence and Sustenance

5.3.1 Partial senescence

Partial senescence corresponds to a strategy of π < π0 followed by π = π0. Vitality decreases

and then is maintained.

The case of partial senescence is very interesting. The propensity to share resources be-

tween reproduction and growth is small (ηr = 2) and therefore exclusive investment is desir-

able. A high reproductive potential is build up during development and then harvested at

the cost of falling vitality until a level of vitality is reached that still keeps mortality at a

sufficiently low level, maintained at low costs (ηg = 0.5). An example is illustrated in Fig. 7

with the parameter combination

ηr = 2, ηg = 0.5, b = 0.2, c = 0.004, k = 3, κ = 0.7, δ = 0.2. (20)

2.5 5 7.5 10 12.5 15 17.5
age

0.2

0.4

0.6

0.8

1
investment

2.5 5 7.5 10 12.5 15 17.5
age

0.01

0.015

0.02

0.025

0.03

mortality

2.5 5 7.5 10 12.5 15 17.5
age

0.002

0.004

0.006

0.008

0.01

0.012

0.014

fertility

Figure 7: Example of Partial Senescence. (Dashed line: π0, level of investment required for
maintenance)
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5.3.2 Delayed partial senescence

Delayed partial senescence corresponds to a strategy of π > π0, followed by 0 < π < π0,

followed by π = π0. Vitality first increases, then decreases and then is maintained.

The high extrinsic mortality favors an early onset of reproduction. Cheap maintenance

together with a high level of deterioration increase the tendency to invest in growth and

maintenance over some period of life. An example is illustrated in Fig. 8. Note that investment

is plotted over the life-course to clarify the strategy. Each step corresponds to a one unit change

in vitality. Vitality increases after the age of maturity α = 4 until it reaches a peak of about

60 at age 14. Then vitality starts to fall. The period of decline in vitality is slowed down to an

extent that the corresponding changes in mortality and fertility are negligible over the main

part of life (e0(α) = 22). The example pertains to the parameter combination

ηr = 1, ηg = 0.5, b = 0.3, c = 0.01, k = 3, κ = 0.7, δ = 0.2. (21)
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Figure 8: Example of Delayed Partial Senescence. (Dashed line: π0, level of investment
required for maintenance. Life-course: measures the number of one unit changes in vitality)
Note that in the lower right picture the trajectories of π and π0 overlap, because π falls just
slightly below π0.

17



6 Senescence Surfaces

The model sheds light on the characteristics that determine whether senescent or non-senescent

life-histories are optimal. Whether a particular life-history is classified as senescent or non-

senescent can be determined by the proportion of lifetime reproduction that is realized at ages

when mortality rises, i.e. π < π0. This indicator of senescence, S, is given by

S =

∑∞
x=0 Jx lx mx∑∞

x=0 lx mx

, (22)

where Jx = 1 if π(ψ(x)) < π0(ψ(x)) and Jx = 0 otherwise. If S = 1 the strategy is fully

senescent and if S = 0 then the strategy is fully non-senescent. All values in between describe

mixed strategies. For the eight strategies discussed above, the ”senescence” and ”subsuste-

nance” strategies are fully senescent, the ”sustenance” and ”supersustenance” strategies are

fully non-senescent, and the other strategies are mixed.

Figure 9 illustrates the degrees of senescence indicated by S for combinations of ηr and

ηg given the specific parameter combination k = 3, κ = 0.8 and δ = 0.1. Surfaces span over

different mortality conditions determined by b and c.

Three main features are noteworthy. First, low costs of reproduction (ηr = 0.5) correspond

to non-senescent strategies over a broad range of intrinsic and extrinsic mortality while ex-

pensive reproduction (ηr = 2) mainly results in senescent life-histories. Second, low costs of

reproduction promote mixed strategies whereas expensive reproduction favors exclusive strate-

gies. Third, the left and right column appear to be roughly mirrored. High extrinsic mortality

c only corresponds to senescent areas when maintenance costs are high (ηg = 2), whereas the

opposite is true for low costs of maintenance (ηg = 0.5). This is striking. Low extrinsic risk of

death favors senescence and high extrinsic risk favors non-senescence if maintenance is cheap.

Further points can be noted. Increasing intrinsic mortality b broadens the range of ex-

trinsic hazards where mixed strategies are optimal if reproduction is cheap. If reproduction

and maintenance are expensive, then non-senescence is only optimal at very low levels of mor-

tality. If only reproduction is costly but maintenance is reasonable then very low mortality

corresponds to mixed strategies.
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Figure 9: Senescence surfaces: Red=Senescence (S=1), Blue=Non-senescence (S=0),
Green=Mixed (0 < S < 0.35), Yellow=Mixed (0.35 < S < 0.65), Orange=Mixed (0.65 < S <
1). Rows: ηr = 0.5, ηr = 2, Columns: ηg = 0.5, ηg = 2. In all cases k = 3, κ = 0.8, δ = 0.1.
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Table 2: Strategies for Cheap vs Costly Reproduction and Maintenance for Low and
High intrinsic and extrinsic hazard of Death.

ηg = 0.5 ηg = 2

ηr = 0.5

4.2 del sub del sub super
b 2.2 del sub super super

0.2 super super super

c 0.001 0.041 0.081

4.2 super del sen del sen
b 2.2 super super del sen

0.2 super super super

c 0.001 0.041 0.081

ηr = 2

2.2 sub sub sub
b 1.2 sub sub sub

0.2 part sub del sub
0.1 part del part sust

c 0.001 0.005 0.009

2.2 sen sen sen
b 1.2 sen sen sen

0.2 sust sust sen

c 0.001 0.005 0.009

sen: senescence, del sen: delayed senescence, sub: subsustenance, del sub: delayed subsustenance,
sust: sustenance, super: supersustenance, part: partial senescence, del part: delayed partial senes-
cence

6.1 Costs and Risks

The values of the indicator of senescence S are determined by the underlying life-history

strategies. Table 2 shows the interplay between cheap and costly reproduction and growth for

low and high intrinsic and extrinsic hazards of death, with parameter values corresponding to

those in Figure 9.

Values of ηr < 1 pertain to cases when reproduction is cheap (row one). The propensity

for parallel investment in reproduction and growth is high. Therefore, efficient reproduction

is associated with supersustenance strategies.

Values of ηg < 1 pertain to cases when growth is cheap (column one). Any decay is easily

retarded to such a slow pace that the decline in vitality is virtually equivalent to maintenance

but with the benefits that more energy can be used for reproduction. Therefore, efficient

maintenance is associated with subsustenance strategies.

If the extrinsic hazard of death is high, early maturity is favored. This reduces the time

of development and hence vitality at maturity. Vitality, however, determines the level of

energy available and therefore the potential to reproduce. This potential might be small if
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reproduction starts very early and should therefore be maintained if affordable. An increase

in the extrinsic hazard of death shifts the strategy from subsustenance to sustenance. The

shift from senescence to non-senescence indicated by S therefore reflects a shift from virtual

maintenance to real maintenance of vitality. This explains the observation that higher levels

of extrinsic mortality can favor non-senescence rather than senescence if maintenance is cheap,

which, at first sight, seems counter-intuitive.

If maintenance is costly, ηg > 1, then increasing c promotes senescence. Any attempt to

retard deterioration is expensive. Instead, reproductive potential is build up and subsequently

harvested using all energy available and no energy is allocated to maintenance. In this case,

the decay for organisms is assumed here to be exponential. Generally, for high maintenance

costs, low levels of mortality favor non-senescence.

Supersustenance is a strategy that simultaneously allows for an early age of maturity

but also for a further build up of reproductive potential. As long as reproduction and/or

maintenance is cheap it can be optimal to precede any period of decay by a period of parallel

investment in growth and reproduction. Since high levels of extrinsic mortality favor an early

onset of reproduction, such combined strategies can be optimal when c becomes larger.

If both reproduction and growth are costly, ηr > 1 and ηg > 1, then exclusive allocation,

i.e. senescence is optimal. Sustenance is favored only if total mortality is very low, because a

low level of vitality requires little maintenance costs.

6.2 When Costs are Low

When costs of reproduction are low then supersustenance is favored. An especially efficient

and cheap way of reproduction is vegetative propagation. If a newly grown unit of biomass

could equally well remain a part of the individual or become a new individual itself, then any

investment in growth is equivalently an investment in reproduction.

Candidate species for low costs of growth and maintenance are modular organisms. Body

parts are easily replaced. Species with low costs of maintenance are expected to follow strate-

gies of subsustenance. This may be indistinguishable from a non-senescence strategy in nature.

Complicated reproductive strategies could indicate high costs of reproduction. Highly
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differentiated organisms with non-replaceable body parts might have higher maintenance costs.

7 The Humanesque Case

The example in Figure 1 corresponds to a senescence strategy (S = 1) and captures the general

features of human life history. Mortality falls until the age of maturity of α ≈ 13. Mortality

rises at a constant rate δ = 0.1 from maturity onwards. Reproduction follows a hump-shaped

curve. Note that the simple model does not capture menopause. Life-expectancy at birth

as well as life-expectancy at maturity equal 25. If time units would correspond to years this

setting of parameters might capture the main features of ancient human life-history. However,

vitality in humans is only partly determined by the functioning of body cells. What makes

humans a special case is the large brain with the capacity to learn and to acquire human capital

(Kaplan and Robson, 2002). Still, the ”humanesque” case can be used to understand what

parameter crucially affects the boundary between senescence and non-senescence. Results are

shown in Tables 3 and 4.

7.1 Changes in Efficiencies

The effects of deviations of the efficiency parameters from the humanesque case are shown

in Table 3. Increasing ηg from 0.4 to 2 shifts the strategy between five different categories,

ranging from supersustenance to senescence. This is a striking finding. Increasing ηr from 0.4

to 2 shifts the strategy between three different categories, ranging from supersustenance to

senescence.

The costs of maintenance, ηg, are the crucial determinant of life-history strategies as clas-

sified above. The costs of reproduction, ηr, are of almost equal importance to the optimal

life-history.

7.2 Changes in Mortality

Reduction in the mortality parameters b (to 0.1) or c (to 0.004) can change the strategy from

senescent to non-senescent. Remarkably, however, their impact is constraint by the efficiencies
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Table 3: Changes in Efficiencies

ηr ηg S Strategy

2 0.4 0 Supersustenance
2 0.45 0.87 Delayed subsustenance
2 0.6 1 Subsustenance
2 1.0 0 Sustenance
2 2 1 Senescence

0.4 2 0 Supersustenance
1.0 2 0 Sustenance
2 2 1 Senescence

k = 3, κ = 0.8, δ = 0.1, b = 0.3, and c = 0.01

Table 4: Interaction Between
Efficiencies and Mortality

ηr ηg b c S

2 2 0.3 0.004 0
2 2 0.1 0.01 0
3 2 0.3 0 1
3 2 0 0.01 1
2 3 0.3 0 1
2 3 0 0.01 1

k = 3, κ = 0.8, and δ = 0.1

as shown in Table 4. Higher costs of reproduction (ηr = 3) or maintenance (ηg = 3) preclude

non-senescence even for zero levels of intrinsic or extrinsic mortality. The efficiencies of the

growth and reproductive systems restrict life histories in their adaption to changing mortality

conditions. For ηr = ηg = 2, the effects of changes in mortality on age and vitality at maturity,

life-expectancy and the indicator of senescence can be seen in Figures 10 and 11.

The values of k, κ, and δ are of no direct importance to the boundary between non-senescence

and senescence. Their influence on the strategy by changing the level of maximum vitality Ψ

can be offset by changes in intrinsic mortality b. The parameters k, κ, and δ set the speed

23



0 2 4 6 8 10

0
5

10
15

b

A
ge

 a
t M

at
ur

ity

0 2 4 6 8 10

0
20

40
60

80
10

0

b

V
ita

lit
y 

at
 M

at
ur

ity

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b

In
di

ca
to

r 
of

 S
en

es
ce

nc
e:

 S

0 2 4 6 8 10

0
20

40
60

80
12

0

b

Li
fe

−
ex

pe
ct

an
cy

Figure 10: Changes in vitality-dependent mortality component b. (red=senescence,
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of growth and decay and therefore can be used to determine the time and size scale of the

strategy.

8 Summary

The simple model developed above captures the main features of life - reproduction, growth

and maintenance. The results show that the range of optimal life histories is wide.

The costs of growth and maintenance fundamentally determine whether an optimal life-

history follows a non-senescent strategy or a senescent strategy. Of almost equal importance

are the costs of reproduction. Mortality conditions may have a strong influence on the bound-

ary between non-senescence and senescence if the costs of maintenance and reproduction are

relatively low. If the costs are too high, even reduction of intrinsic or extrinsic mortality to

zero cannot shift a senescent strategy to a non-senescent one.

High intrinsic mortality b increases the importance of high vitality. How important it is

to attain and maintain this high vitality depends on the level of the extrinsic hazard c. The

mortality parameters mainly influence details of a life-history, i.e. optimal age and vitality at

maturity as well as life-expectancy.

Gompertzian senescence, i.e. exponential increasing mortality, is the prevalent optimal

strategy only if both reproduction and maintenance are costly. If maintenance is cheap, then

Gompertzian senescence is never optimal. If maintenance is costly but reproduction is cheap

then Gompertzian senescence is only optimal at high levels of mortality.

Efficient maintenance and growth systems favor maintenance strategies while efficient re-

productive systems favor strategies of parallel growth and reproduction.

Research is needed to pin-point the kind of species that follow different kinds of life-

histories. The possibly broad ranging categories should be determined by the efficiencies

of growth and reproductive systems. Modularity, vegetative reproduction, simple reproduc-

tion and growth as well as protected environments are characteristics that may lead to non-

senescent strategies.
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